308 lines
16 KiB
Python
308 lines
16 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBart50Tokenizer, MBart50TokenizerFast, is_torch_available
|
|
from transformers.testing_utils import (
|
|
get_tests_dir,
|
|
nested_simplify,
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
slow,
|
|
)
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
if is_torch_available():
|
|
from transformers.models.mbart.modeling_mbart import shift_tokens_right
|
|
|
|
EN_CODE = 250004
|
|
RO_CODE = 250020
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class MBart50TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "facebook/mbart-large-50-one-to-many-mmt"
|
|
tokenizer_class = MBart50Tokenizer
|
|
rust_tokenizer_class = MBart50TokenizerFast
|
|
test_rust_tokenizer = True
|
|
test_sentencepiece = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def test_convert_token_and_id(self):
|
|
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
|
|
token = "<s>"
|
|
token_id = 0
|
|
|
|
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
|
|
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
|
|
|
|
def test_get_vocab(self):
|
|
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
|
|
|
|
self.assertEqual(vocab_keys[0], "<s>")
|
|
self.assertEqual(vocab_keys[1], "<pad>")
|
|
self.assertEqual(vocab_keys[-1], "<mask>")
|
|
self.assertEqual(len(vocab_keys), 1_054)
|
|
|
|
def test_vocab_size(self):
|
|
self.assertEqual(self.get_tokenizer().vocab_size, 1_054)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = MBart50Tokenizer(SAMPLE_VOCAB, src_lang="en_XX", tgt_lang="ro_RO", keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
|
|
)
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(tokens,[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."]) # fmt: skip
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(
|
|
ids,
|
|
[
|
|
value + tokenizer.fairseq_offset
|
|
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
|
|
],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(back_tokens,[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."],) # fmt: skip
|
|
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
expected_encoding = {'input_ids': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip
|
|
|
|
self.tokenizer_integration_test_util(
|
|
expected_encoding=expected_encoding,
|
|
model_name="facebook/mbart-large-50",
|
|
revision="d3913889c59cd5c9e456b269c376325eabad57e2",
|
|
)
|
|
|
|
# overwrite from test_tokenization_common to speed up test
|
|
def test_save_pretrained(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it save with the same files + the tokenizer.json file for the fast one
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=True
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it save with the same files
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=False
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it saved the tokenizer.json file
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class MBart50OneToManyIntegrationTest(unittest.TestCase):
|
|
checkpoint_name = "facebook/mbart-large-50-one-to-many-mmt"
|
|
src_text = [
|
|
" UN Chief Says There Is No Military Solution in Syria",
|
|
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
|
|
]
|
|
tgt_text = [
|
|
"Şeful ONU declară că nu există o soluţie militară în Siria",
|
|
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
|
|
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
|
|
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
|
|
]
|
|
expected_src_tokens = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tokenizer: MBart50Tokenizer = MBart50Tokenizer.from_pretrained(
|
|
cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
|
|
)
|
|
cls.pad_token_id = 1
|
|
return cls
|
|
|
|
def check_language_codes(self):
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"], 250038)
|
|
|
|
def test_tokenizer_batch_encode_plus(self):
|
|
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
|
|
self.assertListEqual(self.expected_src_tokens, ids)
|
|
|
|
def test_tokenizer_decode_ignores_language_codes(self):
|
|
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
|
|
generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
|
|
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
|
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
|
|
self.assertEqual(result, expected_romanian)
|
|
self.assertNotIn(self.tokenizer.eos_token, result)
|
|
|
|
def test_tokenizer_truncation(self):
|
|
src_text = ["this is gunna be a long sentence " * 20]
|
|
assert isinstance(src_text[0], str)
|
|
desired_max_length = 10
|
|
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
|
|
self.assertEqual(ids[0], EN_CODE)
|
|
self.assertEqual(ids[-1], 2)
|
|
self.assertEqual(len(ids), desired_max_length)
|
|
|
|
def test_mask_token(self):
|
|
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250053, 250001])
|
|
|
|
def test_special_tokens_unaffacted_by_save_load(self):
|
|
tmpdirname = tempfile.mkdtemp()
|
|
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
|
|
self.tokenizer.save_pretrained(tmpdirname)
|
|
new_tok = MBart50Tokenizer.from_pretrained(tmpdirname)
|
|
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
|
|
|
|
@require_torch
|
|
def test_batch_fairseq_parity(self):
|
|
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
|
|
assert batch.input_ids[1][0] == EN_CODE
|
|
assert batch.input_ids[1][-1] == 2
|
|
assert batch.labels[1][0] == RO_CODE
|
|
assert batch.labels[1][-1] == 2
|
|
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
|
|
|
|
@require_torch
|
|
def test_tokenizer_prepare_batch(self):
|
|
batch = self.tokenizer(
|
|
self.src_text,
|
|
text_target=self.tgt_text,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=len(self.expected_src_tokens),
|
|
return_tensors="pt",
|
|
)
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
|
|
self.assertEqual((2, 14), batch.input_ids.shape)
|
|
self.assertEqual((2, 14), batch.attention_mask.shape)
|
|
result = batch.input_ids.tolist()[0]
|
|
self.assertListEqual(self.expected_src_tokens, result)
|
|
self.assertEqual(2, batch.decoder_input_ids[0, 0]) # decoder_start_token_id
|
|
# Test that special tokens are reset
|
|
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
|
|
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
|
|
|
|
def test_seq2seq_max_target_length(self):
|
|
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
|
|
targets = self.tokenizer(
|
|
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
|
|
)
|
|
labels = targets["input_ids"]
|
|
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)
|
|
|
|
self.assertEqual(batch.input_ids.shape[1], 3)
|
|
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
|
|
|
|
@require_torch
|
|
def test_tokenizer_translation(self):
|
|
inputs = self.tokenizer._build_translation_inputs(
|
|
"A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR"
|
|
)
|
|
|
|
self.assertEqual(
|
|
nested_simplify(inputs),
|
|
{
|
|
# en_XX, A, test, EOS
|
|
"input_ids": [[250004, 62, 3034, 2]],
|
|
"attention_mask": [[1, 1, 1, 1]],
|
|
# ar_AR
|
|
"forced_bos_token_id": 250001,
|
|
},
|
|
)
|