transformers/tests/models/marian/test_tokenization_marian.py

157 lines
8.7 KiB
Python

# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model")
mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"}
zh_code = ">>zh<<"
ORG_NAME = "Helsinki-NLP/"
if is_torch_available():
FRAMEWORK = "pt"
elif is_tf_available():
FRAMEWORK = "tf"
else:
FRAMEWORK = "jax"
@require_sentencepiece
class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "Helsinki-NLP/opus-mt-en-de"
tokenizer_class = MarianTokenizer
test_rust_tokenizer = False
test_sentencepiece = True
def setUp(self):
super().setUp()
vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab"])
save_json(mock_tokenizer_config, save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"])
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["source_spm"])
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["target_spm"])
tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs) -> MarianTokenizer:
return MarianTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
return (
"This is a test",
"This is a test",
)
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "</s>"
token_id = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "</s>")
self.assertEqual(vocab_keys[1], "<unk>")
self.assertEqual(vocab_keys[-1], "<pad>")
self.assertEqual(len(vocab_keys), 9)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 9)
def test_tokenizer_equivalence_en_de(self):
en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de")
batch = en_de_tokenizer(["I am a small frog"], return_tensors=None)
self.assertIsInstance(batch, BatchEncoding)
expected = [38, 121, 14, 697, 38848, 0]
self.assertListEqual(expected, batch.input_ids[0])
save_dir = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(save_dir)
contents = [x.name for x in Path(save_dir).glob("*")]
self.assertIn("source.spm", contents)
MarianTokenizer.from_pretrained(save_dir)
def test_outputs_not_longer_than_maxlen(self):
tok = self.get_tokenizer()
batch = tok(
["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual(batch.input_ids.shape, (2, 512))
def test_outputs_can_be_shorter(self):
tok = self.get_tokenizer()
batch_smaller = tok(["I am a tiny frog", "I am a small frog"], padding=True, return_tensors=FRAMEWORK)
self.assertIsInstance(batch_smaller, BatchEncoding)
self.assertEqual(batch_smaller.input_ids.shape, (2, 10))
@slow
def test_tokenizer_integration(self):
expected_encoding = {'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: skip
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="Helsinki-NLP/opus-mt-en-de",
revision="1a8c2263da11e68e50938f97e10cd57820bd504c",
decode_kwargs={"use_source_tokenizer": True},
)
def test_tokenizer_integration_seperate_vocabs(self):
tokenizer = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs")
source_text = "Tämä on testi"
target_text = "This is a test"
expected_src_ids = [76, 7, 2047, 2]
expected_target_ids = [69, 12, 11, 940, 2]
src_ids = tokenizer(source_text).input_ids
self.assertListEqual(src_ids, expected_src_ids)
target_ids = tokenizer(text_target=target_text).input_ids
self.assertListEqual(target_ids, expected_target_ids)
decoded = tokenizer.decode(target_ids, skip_special_tokens=True)
self.assertEqual(decoded, target_text)
def test_tokenizer_decode(self):
tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es")
source_text = "Hello World"
ids = tokenizer(source_text)["input_ids"]
output_text = tokenizer.decode(ids, skip_special_tokens=True)
self.assertEqual(source_text, output_text)