523 lines
22 KiB
Python
523 lines
22 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import math
|
|
import unittest
|
|
from typing import Dict, List, Tuple
|
|
from unittest.util import safe_repr
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import AutoTokenizer, MambaConfig, is_torch_available
|
|
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
MambaForCausalLM,
|
|
MambaModel,
|
|
)
|
|
from transformers.models.mamba.modeling_mamba import MambaCache
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
|
|
else:
|
|
is_torch_greater_or_equal_than_2_0 = False
|
|
|
|
|
|
class MambaModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=14,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
intermediate_size=32,
|
|
hidden_act="silu",
|
|
hidden_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
tie_word_embeddings=True,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.bos_token_id = vocab_size - 1
|
|
self.eos_token_id = vocab_size - 1
|
|
self.pad_token_id = vocab_size - 1
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
|
def get_large_model_config(self):
|
|
return MambaConfig.from_pretrained("hf-internal-testing/mamba-2.8b")
|
|
|
|
def prepare_config_and_inputs(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config(
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
|
|
reorder_and_upcast_attn=reorder_and_upcast_attn,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
None,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def get_config(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
return MambaConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
intermediate_size=self.intermediate_size,
|
|
activation_function=self.hidden_act,
|
|
n_positions=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
use_cache=True,
|
|
bos_token_id=self.bos_token_id,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
tie_word_embeddings=self.tie_word_embeddings,
|
|
)
|
|
|
|
def get_pipeline_config(self):
|
|
config = self.get_config()
|
|
config.vocab_size = 300
|
|
return config
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def create_and_check_mamba_model(self, config, input_ids, *args):
|
|
config.output_hidden_states = True
|
|
model = MambaModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(len(result.hidden_states), config.num_hidden_layers + 1)
|
|
|
|
def create_and_check_causal_lm(self, config, input_ids, *args):
|
|
model = MambaForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, labels=input_ids)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_state_equivalency(self, config, input_ids, *args):
|
|
model = MambaModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
outputs = model(input_ids)
|
|
output_whole = outputs.last_hidden_state
|
|
|
|
outputs = model(input_ids[:, :-1], use_cache=True)
|
|
output_one = outputs.last_hidden_state
|
|
|
|
# Using the state computed on the first inputs, we will get the same output
|
|
outputs = model(input_ids[:, -1:], cache_params=outputs.cache_params)
|
|
output_two = outputs.last_hidden_state
|
|
|
|
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
|
|
# TODO the orignal mamba does not support decoding more than 1 token neither do we
|
|
|
|
def create_and_check_mamba_cached_slow_forward_and_backwards(
|
|
self, config, input_ids, *args, gradient_checkpointing=False
|
|
):
|
|
model = MambaModel(config)
|
|
model.to(torch_device)
|
|
if gradient_checkpointing:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
# create cache
|
|
cache = model(input_ids, use_cache=True).cache_params
|
|
cache.seqlen_offset = 0
|
|
|
|
# use cache
|
|
token_emb = model.embeddings(input_ids)
|
|
outputs = model.layers[0].mixer.slow_forward(token_emb, cache)
|
|
|
|
loss = torch.log(1 + torch.abs(outputs.sum()))
|
|
self.parent.assertEqual(loss.shape, ())
|
|
self.parent.assertEqual(outputs.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
loss.backward()
|
|
|
|
def create_and_check_mamba_lm_head_forward_and_backwards(
|
|
self, config, input_ids, *args, gradient_checkpointing=False
|
|
):
|
|
model = MambaForCausalLM(config)
|
|
model.to(torch_device)
|
|
if gradient_checkpointing:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
result = model(input_ids, labels=input_ids)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
result.loss.backward()
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
_,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
inputs_dict = {"input_ids": input_ids}
|
|
return config, inputs_dict
|
|
|
|
|
|
@unittest.skipIf(
|
|
not is_torch_greater_or_equal_than_2_0, reason="See https://github.com/huggingface/transformers/pull/24204"
|
|
)
|
|
@require_torch
|
|
class MambaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (MambaModel, MambaForCausalLM) if is_torch_available() else ()
|
|
fx_compatible = False # FIXME let's try to support this @ArthurZucker
|
|
test_torchscript = False # FIXME let's try to support this @ArthurZucker
|
|
test_missing_keys = False
|
|
test_model_parallel = False
|
|
test_pruning = False
|
|
test_head_masking = False # Mamba does not have attention heads
|
|
test_model_parallel = False
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": MambaModel, "text-generation": MambaForCausalLM} if is_torch_available() else {}
|
|
)
|
|
|
|
def setUp(self):
|
|
self.model_tester = MambaModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=MambaConfig, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
|
|
)
|
|
|
|
def assertInterval(self, member, container, msg=None):
|
|
r"""
|
|
Simple utility function to check if a member is inside an interval.
|
|
"""
|
|
if isinstance(member, torch.Tensor):
|
|
max_value, min_value = member.max().item(), member.min().item()
|
|
elif isinstance(member, list) or isinstance(member, tuple):
|
|
max_value, min_value = max(member), min(member)
|
|
|
|
if not isinstance(container, list):
|
|
raise TypeError("container should be a list or tuple")
|
|
elif len(container) != 2:
|
|
raise ValueError("container should have 2 elements")
|
|
|
|
expected_min, expected_max = container
|
|
|
|
is_inside_interval = (min_value >= expected_min) and (max_value <= expected_max)
|
|
|
|
if not is_inside_interval:
|
|
standardMsg = "%s not found in %s" % (safe_repr(member), safe_repr(container))
|
|
self.fail(self._formatMessage(msg, standardMsg))
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip("No attention in mamba")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@require_torch_multi_gpu
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# some params shouldn't be scattered by nn.DataParallel
|
|
# so just remove them if they are present.
|
|
blacklist_non_batched_params = ["cache_params"]
|
|
for k in blacklist_non_batched_params:
|
|
inputs_dict.pop(k, None)
|
|
|
|
# move input tensors to cuda:O
|
|
for k, v in inputs_dict.items():
|
|
if torch.is_tensor(v):
|
|
inputs_dict[k] = v.to(0)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
model.to(0)
|
|
model.eval()
|
|
|
|
# Wrap model in nn.DataParallel
|
|
model = torch.nn.DataParallel(model)
|
|
with torch.no_grad():
|
|
_ = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
def test_mamba_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_mamba_model(*config_and_inputs)
|
|
|
|
def test_mamba_lm_head_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_causal_lm(*config_and_inputs)
|
|
|
|
def test_state_equivalency(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_state_equivalency(*config_and_inputs)
|
|
|
|
def test_mamba_cached_slow_forward_and_backwards(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_mamba_cached_slow_forward_and_backwards(*config_and_inputs)
|
|
|
|
def test_mamba_lm_head_forward_and_backwards(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_mamba_lm_head_forward_and_backwards(*config_and_inputs)
|
|
|
|
def test_initialization(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
for name, param in model.named_parameters():
|
|
if "dt_proj.bias" in name:
|
|
dt = torch.exp(
|
|
torch.tensor([0, 1]) * (math.log(config.time_step_max) - math.log(config.time_step_min))
|
|
+ math.log(config.time_step_min)
|
|
).clamp(min=config.time_step_floor)
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
|
if param.requires_grad:
|
|
self.assertTrue(param.data.max().item() <= inv_dt[1])
|
|
self.assertTrue(param.data.min().item() >= inv_dt[0])
|
|
elif "A_log" in name:
|
|
A = torch.arange(1, config.state_size + 1, dtype=torch.float32)[None, :]
|
|
self.assertTrue(torch.allclose(param.data, torch.log(A), atol=1e-5, rtol=1e-5))
|
|
elif "D" in name:
|
|
if param.requires_grad:
|
|
# check if it's a ones like
|
|
self.assertTrue(torch.allclose(param.data, torch.ones_like(param.data), atol=1e-5, rtol=1e-5))
|
|
|
|
@unittest.skip("Mamba does not use attention")
|
|
def test_attention_outputs(self):
|
|
r"""
|
|
Overriding the test_attention_outputs test as the attention outputs of Mamba are different from other models
|
|
it has a shape `batch_size, seq_len, hidden_size`.
|
|
"""
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model = MambaModel.from_pretrained("hf-internal-testing/mamba-130m")
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, MambaCache): # MODIFIED PART START
|
|
recursive_check(tuple_object.conv_states, dict_object.conv_states)
|
|
recursive_check(tuple_object.ssm_states, dict_object.ssm_states)
|
|
elif isinstance(tuple_object, (List, Tuple)): # MODIFIED PART END
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(
|
|
tuple_object.values(), dict_object.values()
|
|
):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(tuple_object, dict_object, atol=1e-5),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
|
|
@require_torch
|
|
class MambaIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_id = "state-spaces/mamba-2.8b-hf"
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
|
|
|
@parameterized.expand([(torch_device,), ("cpu",)])
|
|
def test_simple_generate(self, device):
|
|
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16)
|
|
model.to(device)
|
|
model.config.use_cache = True
|
|
input_ids = tokenizer("Hey how are you doing?", return_tensors="pt")["input_ids"].to(device)
|
|
|
|
out = model.generate(input_ids, do_sample=False, max_new_tokens=10)
|
|
output_sentence = tokenizer.decode(out[0, :])
|
|
self.assertEqual(output_sentence, "Hey how are you doing?\n\nI'm so glad you're here.")
|
|
|
|
with torch.no_grad():
|
|
logits = model(input_ids=input_ids).logits
|
|
|
|
EXPECTED_LOGITS_NO_GRAD = torch.tensor(
|
|
[
|
|
-55.6875, -69.8750, -49.9062, -51.7500, -57.6875, -57.9375, -56.9688,
|
|
-57.9375, -54.6875, -55.9375, -55.3125, -58.0938, -60.5625, -47.0000,
|
|
-52.0312, -49.7812, -55.9375, -57.9062, -56.7812, -57.1250, -57.3438,
|
|
-58.3125, -57.8125, -58.7812, -59.6250, -59.0938, -58.7188, -52.9375,
|
|
-53.4688, -57.3750, -56.9375, -55.7500, -53.3125, -55.8438, -57.0000,
|
|
-56.9062, -56.2188, -54.7188, -56.4375, -57.5000
|
|
]
|
|
,dtype=torch.float32) # fmt: skip
|
|
|
|
torch.testing.assert_close(logits[0, 0, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1e-3)
|
|
|
|
@parameterized.expand([(torch_device,), ("cpu",)])
|
|
def test_simple_generate_cuda_kernels_tiny(self, device):
|
|
expected_output = "Hello my name is John and I am a newbie to the world"
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
|
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16).to(device)
|
|
|
|
output = model.generate(input_ids, max_new_tokens=10)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|
|
|
|
@parameterized.expand([(torch_device,), ("cpu",)])
|
|
@slow
|
|
def test_simple_generate_cuda_kernels_small(self, device):
|
|
expected_output = "Hello my name is\n\nI am a\n\nI am a"
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
|
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-790m-hf", torch_dtype=torch.float16).to(device)
|
|
|
|
output = model.generate(input_ids, max_new_tokens=10)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|
|
|
|
@parameterized.expand([(torch_device,), ("cpu",)])
|
|
@slow
|
|
def test_simple_generate_cuda_kernels_mid(self, device):
|
|
expected_output = "Hello my name is John and I am a\n\nI am a single father of a beautiful daughter. I am a"
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
|
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-1.4b-hf", torch_dtype=torch.float16).to(device)
|
|
|
|
output = model.generate(input_ids, max_new_tokens=20)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|
|
|
|
@parameterized.expand([(torch_device,), ("cpu",)])
|
|
@slow
|
|
def test_simple_generate_cuda_kernels_big(self, device):
|
|
expected_output = "Hello my name is John and I am a new member of this forum. I am a retired Marine and I am a member of the Marine Corps League. I am a"
|
|
|
|
input_ids = self.tokenizer("Hello my name is", return_tensors="pt").input_ids.to(device)
|
|
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.float16).to(device)
|
|
|
|
output = model.generate(input_ids, max_new_tokens=30)
|
|
output_sentence = self.tokenizer.decode(output[0].tolist())
|
|
|
|
self.assertEqual(output_sentence, expected_output)
|