transformers/tests/models/instructblip/test_modeling_instructblip.py

640 lines
26 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch InstructBLIP model."""
import inspect
import tempfile
import unittest
import numpy as np
import requests
from transformers import (
CONFIG_MAPPING,
InstructBlipConfig,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from transformers.testing_utils import (
require_accelerate,
require_bitsandbytes,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
ids_tensor,
random_attention_mask,
)
if is_torch_available():
import torch
from torch import nn
from transformers import InstructBlipForConditionalGeneration, InstructBlipVisionModel
if is_vision_available():
from PIL import Image
class InstructBlipVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return InstructBlipVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = InstructBlipVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class InstructBlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBLIP's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (InstructBlipVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = InstructBlipVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=InstructBlipVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="InstructBLIP's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training(self):
pass
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-flan-t5-xl"
model = InstructBlipVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class InstructBlipQFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
def get_config(self):
return InstructBlipQFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class InstructBlipTextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class InstructBlipForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = InstructBlipVisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = InstructBlipQFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = InstructBlipTextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
def get_config(self):
return InstructBlipConfig.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
):
model = InstructBlipForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
qformer_input_ids=qformer_input_ids,
qformer_attention_mask=qformer_attention_mask,
)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"qformer_input_ids": qformer_input_ids,
"qformer_attention_mask": qformer_attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
class InstructBlipForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (InstructBlipForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = InstructBlipForConditionalGenerationDecoderOnlyModelTester(self)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="InstructBlipForConditionalGeneration doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Tied weights are tested in individual model tests")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="InstructBlipModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save InstructBlipConfig and check if we can load InstructBlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = InstructBlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save InstructBlipConfig and check if we can load InstructBlipQFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = InstructBlipQFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-flan-t5-xl"
model = InstructBlipForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class InstructBlipModelIntegrationTest(unittest.TestCase):
@require_bitsandbytes
@require_accelerate
def test_inference_vicuna_7b(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True
)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
# verify logits
with torch.no_grad():
logits = model(**inputs).logits
expected_slice = torch.tensor(
[[-3.3926, -12.2969, 8.4922], [-5.0195, -11.9531, 8.1406], [-4.0039, -13.3594, 9.2578]],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3].float(), expected_slice, atol=1e-3))
# verify generation
outputs = model.generate(**inputs, max_new_tokens=30)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
expected_outputs = [2, 450, 22910, 9565, 310, 445, 1967, 338, 393, 263, 767, 338, 13977, 292, 22095, 373, 278, 1250, 310, 263, 13328, 20134, 29963, 1550, 372, 338, 19500, 1623, 263, 19587, 4272] # fmt: off
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV while it is driving down a busy city",
)
def test_inference_flant5_xl(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
for k, v in inputs.items():
if torch.is_floating_point(v):
inputs[k] = v.to(torch.bfloat16)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
expected_outputs = [0, 37, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 3, 9, 2756, 4459, 6177, 6, 11, 3, 88, 19, 338, 46, 3575, 53, 1476, 12, 743, 112, 2491, 5, 37, 1023, 19, 7225, 788, 12, 8, 685, 24, 34, 1267, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 94, 19, 487, 24, 8, 388, 19, 1119, 12, 1097, 540, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 6, 68, 34, 19, 92, 487, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 3, 13865, 13, 8, 1053, 21, 8, 388, 31, 7, 2874, 6, 34, 19, 964, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 1] # fmt: skip
expected_outputs = [0, 37, 7225, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 46, 3575, 53, 1476, 5223, 12, 34, 6, 15495, 24, 3, 88, 19, 692, 112, 293, 10428, 44, 234, 1066, 145, 338, 3, 9, 50, 1106, 3522, 144, 42, 2192, 7919, 31, 7, 5, 37, 1023, 92, 1267, 3, 9, 381, 13, 119, 3203, 16, 8, 2458, 6, 379, 14264, 6, 9256, 7, 6, 11, 11718, 7, 5, 1] # fmt: skip
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"The unusual image depicts a man ironing clothes on the back of a yellow van in the middle of a busy city street. The man is wearing a yellow shirt with an ironing board attached to it, suggesting that he is doing his own laundry at home rather than using a laundromat or dry cleaner's. The image also shows a number of other vehicles in the background, including buses, taxis, and motorcycles.",
)
def test_inference_interpolate_pos_encoding(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
prompt = "What's in the image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
self.assertEqual(
predictions[0].tolist(), [0, 37, 1023, 753, 3, 9, 2335, 3823, 30, 8, 2608, 28, 3, 9, 1782, 5, 1]
)
self.assertEqual(generated_text, "The image features a woman sitting on the beach with a dog.")