640 lines
26 KiB
Python
640 lines
26 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch InstructBLIP model."""
|
|
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
InstructBlipConfig,
|
|
InstructBlipProcessor,
|
|
InstructBlipQFormerConfig,
|
|
InstructBlipVisionConfig,
|
|
)
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
random_attention_mask,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import InstructBlipForConditionalGeneration, InstructBlipVisionModel
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class InstructBlipVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=1e-10,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return InstructBlipVisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = InstructBlipVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class InstructBlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBLIP's vision encoder does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (InstructBlipVisionModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = InstructBlipVisionModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=InstructBlipVisionConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="InstructBLIP's vision encoder does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "Salesforce/instructblip-flan-t5-xl"
|
|
model = InstructBlipVisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
class InstructBlipQFormerModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
bos_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
self.bos_token_id = bos_token_id
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
if input_mask is not None:
|
|
batch_size, seq_length = input_mask.shape
|
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
|
for batch_idx, start_index in enumerate(rnd_start_indices):
|
|
input_mask[batch_idx, :start_index] = 1
|
|
input_mask[batch_idx, start_index:] = 0
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
|
|
|
|
def get_config(self):
|
|
return InstructBlipQFormerConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
bos_token_id=self.bos_token_id,
|
|
)
|
|
|
|
|
|
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
|
|
class InstructBlipTextModelDecoderOnlyTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=20,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
embed_dim=16,
|
|
num_labels=3,
|
|
word_embed_proj_dim=16,
|
|
type_sequence_label_size=2,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.embed_dim = embed_dim
|
|
self.num_labels = num_labels
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.word_embed_proj_dim = word_embed_proj_dim
|
|
self.is_encoder_decoder = False
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
|
|
input_ids[:, -1] = self.eos_token_id # Eos Token
|
|
|
|
attention_mask = input_ids.ne(self.pad_token_id)
|
|
|
|
return config, input_ids, attention_mask
|
|
|
|
def get_config(self):
|
|
return CONFIG_MAPPING["opt"](
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
embed_dim=self.embed_dim,
|
|
is_encoder_decoder=False,
|
|
word_embed_proj_dim=self.word_embed_proj_dim,
|
|
)
|
|
|
|
|
|
# this model tester uses a decoder-only language model (OPT)
|
|
class InstructBlipForConditionalGenerationDecoderOnlyModelTester:
|
|
def __init__(
|
|
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
|
|
):
|
|
if vision_kwargs is None:
|
|
vision_kwargs = {}
|
|
if qformer_kwargs is None:
|
|
qformer_kwargs = {}
|
|
if text_kwargs is None:
|
|
text_kwargs = {}
|
|
|
|
self.parent = parent
|
|
self.vision_model_tester = InstructBlipVisionModelTester(parent, **vision_kwargs)
|
|
self.qformer_model_tester = InstructBlipQFormerModelTester(parent, **qformer_kwargs)
|
|
self.text_model_tester = InstructBlipTextModelDecoderOnlyTester(parent, **text_kwargs)
|
|
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
|
|
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
|
|
self.is_training = is_training
|
|
self.num_query_tokens = num_query_tokens
|
|
|
|
def prepare_config_and_inputs(self):
|
|
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
|
|
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
|
|
|
|
def get_config(self):
|
|
return InstructBlipConfig.from_vision_qformer_text_configs(
|
|
vision_config=self.vision_model_tester.get_config(),
|
|
qformer_config=self.qformer_model_tester.get_config(),
|
|
text_config=self.text_model_tester.get_config(),
|
|
num_query_tokens=self.num_query_tokens,
|
|
)
|
|
|
|
def create_and_check_for_conditional_generation(
|
|
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
|
|
):
|
|
model = InstructBlipForConditionalGeneration(config).to(torch_device).eval()
|
|
with torch.no_grad():
|
|
result = model(
|
|
pixel_values,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
qformer_input_ids=qformer_input_ids,
|
|
qformer_attention_mask=qformer_attention_mask,
|
|
)
|
|
|
|
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
|
|
self.parent.assertEqual(
|
|
result.logits.shape,
|
|
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"qformer_input_ids": qformer_input_ids,
|
|
"qformer_attention_mask": qformer_attention_mask,
|
|
"labels": input_ids,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class InstructBlipForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (InstructBlipForConditionalGeneration,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
test_torchscript = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = InstructBlipForConditionalGenerationDecoderOnlyModelTester(self)
|
|
|
|
def test_for_conditional_generation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipForConditionalGeneration doesn't support inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Tied weights are tested in individual model tests")
|
|
def test_tied_weights_keys(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="InstructBlipModel does not have input/output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="There's no base InstructBlipModel")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="There's no base InstructBlipModel")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_load_vision_qformer_text_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# Save InstructBlipConfig and check if we can load InstructBlipVisionConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
vision_config = InstructBlipVisionConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
|
|
|
# Save InstructBlipConfig and check if we can load InstructBlipQFormerConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
qformer_config = InstructBlipQFormerConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "Salesforce/instructblip-flan-t5-xl"
|
|
model = InstructBlipForConditionalGeneration.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
return image
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
@slow
|
|
class InstructBlipModelIntegrationTest(unittest.TestCase):
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
def test_inference_vicuna_7b(self):
|
|
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
|
|
model = InstructBlipForConditionalGeneration.from_pretrained(
|
|
"Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True
|
|
)
|
|
|
|
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
|
prompt = "What is unusual about this image?"
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
# verify logits
|
|
with torch.no_grad():
|
|
logits = model(**inputs).logits
|
|
|
|
expected_slice = torch.tensor(
|
|
[[-3.3926, -12.2969, 8.4922], [-5.0195, -11.9531, 8.1406], [-4.0039, -13.3594, 9.2578]],
|
|
device=torch_device,
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(logits[0, :3, :3].float(), expected_slice, atol=1e-3))
|
|
|
|
# verify generation
|
|
outputs = model.generate(**inputs, max_new_tokens=30)
|
|
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
|
|
|
expected_outputs = [2, 450, 22910, 9565, 310, 445, 1967, 338, 393, 263, 767, 338, 13977, 292, 22095, 373, 278, 1250, 310, 263, 13328, 20134, 29963, 1550, 372, 338, 19500, 1623, 263, 19587, 4272] # fmt: off
|
|
|
|
self.assertEqual(outputs[0].tolist(), expected_outputs)
|
|
self.assertEqual(
|
|
generated_text,
|
|
"The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV while it is driving down a busy city",
|
|
)
|
|
|
|
def test_inference_flant5_xl(self):
|
|
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
|
|
model = InstructBlipForConditionalGeneration.from_pretrained(
|
|
"Salesforce/instructblip-flan-t5-xl",
|
|
torch_dtype=torch.bfloat16,
|
|
low_cpu_mem_usage=True,
|
|
).to(torch_device)
|
|
|
|
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
|
prompt = "What is unusual about this image?"
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
|
|
|
|
for k, v in inputs.items():
|
|
if torch.is_floating_point(v):
|
|
inputs[k] = v.to(torch.bfloat16)
|
|
|
|
outputs = model.generate(
|
|
**inputs,
|
|
do_sample=False,
|
|
num_beams=5,
|
|
max_length=256,
|
|
min_length=1,
|
|
top_p=0.9,
|
|
repetition_penalty=1.5,
|
|
length_penalty=1.0,
|
|
temperature=1,
|
|
)
|
|
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
|
|
|
expected_outputs = [0, 37, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 3, 9, 2756, 4459, 6177, 6, 11, 3, 88, 19, 338, 46, 3575, 53, 1476, 12, 743, 112, 2491, 5, 37, 1023, 19, 7225, 788, 12, 8, 685, 24, 34, 1267, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 94, 19, 487, 24, 8, 388, 19, 1119, 12, 1097, 540, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 6, 68, 34, 19, 92, 487, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 3, 13865, 13, 8, 1053, 21, 8, 388, 31, 7, 2874, 6, 34, 19, 964, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 1] # fmt: skip
|
|
|
|
expected_outputs = [0, 37, 7225, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 46, 3575, 53, 1476, 5223, 12, 34, 6, 15495, 24, 3, 88, 19, 692, 112, 293, 10428, 44, 234, 1066, 145, 338, 3, 9, 50, 1106, 3522, 144, 42, 2192, 7919, 31, 7, 5, 37, 1023, 92, 1267, 3, 9, 381, 13, 119, 3203, 16, 8, 2458, 6, 379, 14264, 6, 9256, 7, 6, 11, 11718, 7, 5, 1] # fmt: skip
|
|
|
|
self.assertEqual(outputs[0].tolist(), expected_outputs)
|
|
self.assertEqual(
|
|
generated_text,
|
|
"The unusual image depicts a man ironing clothes on the back of a yellow van in the middle of a busy city street. The man is wearing a yellow shirt with an ironing board attached to it, suggesting that he is doing his own laundry at home rather than using a laundromat or dry cleaner's. The image also shows a number of other vehicles in the background, including buses, taxis, and motorcycles.",
|
|
)
|
|
|
|
def test_inference_interpolate_pos_encoding(self):
|
|
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
|
|
model = InstructBlipForConditionalGeneration.from_pretrained(
|
|
"Salesforce/instructblip-flan-t5-xl",
|
|
torch_dtype=torch.bfloat16,
|
|
low_cpu_mem_usage=True,
|
|
).to(torch_device)
|
|
processor.image_processor.size = {"height": 500, "width": 500}
|
|
|
|
image = prepare_img()
|
|
prompt = "What's in the image?"
|
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
|
|
|
|
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
|
|
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
|
|
|
|
self.assertEqual(
|
|
predictions[0].tolist(), [0, 37, 1023, 753, 3, 9, 2335, 3823, 30, 8, 2608, 28, 3, 9, 1782, 5, 1]
|
|
)
|
|
self.assertEqual(generated_text, "The image features a woman sitting on the beach with a dog.")
|