676 lines
27 KiB
Python
676 lines
27 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Idefics model."""
|
|
|
|
import unittest
|
|
|
|
from parameterized import parameterized
|
|
|
|
from transformers import BitsAndBytesConfig, IdeficsConfig, is_torch_available, is_vision_available
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
is_pt_tf_cross_test,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_sdpa,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import IdeficsForVisionText2Text, IdeficsModel, IdeficsProcessor
|
|
from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig
|
|
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
|
|
else:
|
|
is_torch_greater_or_equal_than_2_0 = False
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class IdeficsModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=1,
|
|
seq_length=7,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
alpha_initializer="ones",
|
|
num_labels=3,
|
|
scope=None,
|
|
modality_type_vocab_size=2,
|
|
vision_embed_dim=32,
|
|
vision_patch_size=2,
|
|
vision_image_size=30,
|
|
vision_num_attention_heads=4,
|
|
vision_num_hidden_layers=5,
|
|
vision_intermediate_size=37,
|
|
perceiver_qk_layer_norms_perceiver=False,
|
|
perceiver_resampler_depth=2,
|
|
perceiver_resampler_head_dim=8,
|
|
perceiver_resampler_n_heads=2,
|
|
perceiver_resampler_n_latents=16,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.alpha_initializer = alpha_initializer
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
self.modality_type_vocab_size = modality_type_vocab_size
|
|
|
|
self.vision_embed_dim = vision_embed_dim
|
|
self.vision_patch_size = vision_patch_size
|
|
self.vision_image_size = vision_image_size
|
|
self.vision_num_attention_heads = vision_num_attention_heads
|
|
self.vision_num_hidden_layers = vision_num_hidden_layers
|
|
self.vision_intermediate_size = vision_intermediate_size
|
|
|
|
self.vision_config = IdeficsVisionConfig(
|
|
embed_dim=self.vision_embed_dim,
|
|
patch_size=self.vision_patch_size,
|
|
image_size=self.vision_image_size,
|
|
num_attention_heads=self.vision_num_attention_heads,
|
|
num_hidden_layers=self.vision_num_hidden_layers,
|
|
intermediate_size=self.vision_intermediate_size,
|
|
)
|
|
|
|
self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver
|
|
self.perceiver_resampler_depth = perceiver_resampler_depth
|
|
self.perceiver_resampler_head_dim = perceiver_resampler_head_dim
|
|
self.perceiver_resampler_n_heads = perceiver_resampler_n_heads
|
|
self.perceiver_resampler_n_latents = perceiver_resampler_n_latents
|
|
|
|
self.perceiver_config = IdeficsPerceiverConfig(
|
|
qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver,
|
|
resampler_depth=self.perceiver_resampler_depth,
|
|
resampler_head_dim=self.perceiver_resampler_head_dim,
|
|
resampler_n_heads=self.perceiver_resampler_n_heads,
|
|
resampler_n_latents=self.perceiver_resampler_n_latents,
|
|
)
|
|
|
|
# we set the expected sequence length (which is used in several tests)
|
|
# this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
|
|
self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1
|
|
|
|
def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
num_images,
|
|
self.num_channels,
|
|
self.image_size + image_expansion,
|
|
self.image_size + image_expansion,
|
|
]
|
|
)
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images])
|
|
|
|
config = self.get_config()
|
|
return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding)
|
|
|
|
def prepare_config_and_inputs_gate_tests(self):
|
|
# Create a list of configs and inputs, to test 2 things:
|
|
# 1. For the same image, the output should be different when image_attention_mask is filled with 0s vs filled with 1s.
|
|
# 2. For 2 different images, the output should be the same when image_attention_mask is filled with 0s.
|
|
|
|
interpolate_pos_encoding = False
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
1,
|
|
self.num_channels,
|
|
self.image_size,
|
|
self.image_size,
|
|
]
|
|
)
|
|
pixel_values_list = [
|
|
pixel_values.clone(),
|
|
pixel_values.clone(),
|
|
pixel_values.clone().fill_(0.6),
|
|
pixel_values.clone().fill_(0.3),
|
|
]
|
|
attention_mask = None
|
|
if self.use_input_mask:
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, 1])
|
|
image_attention_mask_list = [
|
|
image_attention_mask.clone().fill_(0),
|
|
image_attention_mask.clone().fill_(1),
|
|
image_attention_mask.clone().fill_(0),
|
|
image_attention_mask.clone().fill_(0),
|
|
]
|
|
|
|
config = self.get_config()
|
|
inputs_list = []
|
|
for pixel_values, image_attention_mask in zip(pixel_values_list, image_attention_mask_list):
|
|
inputs_list.append(
|
|
{
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"image_attention_mask": image_attention_mask,
|
|
"interpolate_pos_encoding": interpolate_pos_encoding,
|
|
}
|
|
)
|
|
|
|
inputs_w_same_img = inputs_list[:2]
|
|
inputs_w_0_img_attn = inputs_list[2:]
|
|
return config, inputs_w_same_img, inputs_w_0_img_attn
|
|
|
|
def get_config(self):
|
|
return IdeficsConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
alpha_initializer=self.alpha_initializer,
|
|
num_labels=self.num_labels,
|
|
modality_type_vocab_size=self.modality_type_vocab_size,
|
|
vision_config=self.vision_config,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
pixel_values,
|
|
image_attention_mask,
|
|
interpolate_pos_encoding,
|
|
):
|
|
model = IdeficsModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
pixel_values=pixel_values,
|
|
image_attention_mask=image_attention_mask,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_model_gen(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
pixel_values,
|
|
image_attention_mask,
|
|
interpolate_pos_encoding,
|
|
):
|
|
model = IdeficsForVisionText2Text(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
model.generate(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
pixel_values=pixel_values,
|
|
image_attention_mask=image_attention_mask,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
max_length=self.seq_length + 2,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
pixel_values,
|
|
image_attention_mask,
|
|
interpolate_pos_encoding,
|
|
) = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"pixel_values": pixel_values,
|
|
"image_attention_mask": image_attention_mask,
|
|
"interpolate_pos_encoding": interpolate_pos_encoding,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
def prepare_pixel_values(self):
|
|
return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
@require_torch_sdpa
|
|
@slow
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
self.skipTest("Idefics has a hard requirement on SDPA, skipping this test")
|
|
|
|
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
|
|
@require_torch
|
|
class IdeficsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (IdeficsModel, IdeficsForVisionText2Text) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"feature-extraction": IdeficsModel} if is_torch_available() else {}
|
|
test_pruning = False
|
|
test_headmasking = False
|
|
test_torchscript = False
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
# XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same
|
|
# as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing
|
|
# as super won't do it
|
|
if return_labels:
|
|
inputs_dict["labels"] = torch.zeros(
|
|
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
|
|
)
|
|
|
|
return inputs_dict
|
|
|
|
def test_model_outputs_equivalence(self):
|
|
try:
|
|
orig = self.all_model_classes
|
|
# IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does
|
|
self.all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()
|
|
super().test_model_outputs_equivalence()
|
|
finally:
|
|
self.all_model_classes = orig
|
|
|
|
def setUp(self):
|
|
self.model_tester = IdeficsModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model_single_image(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=1, interpolate_pos_encoding=False, image_expansion=0
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_multiple_images(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=2, interpolate_pos_encoding=False, image_expansion=0
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_image_pos_embeddings_interpolation_single_image(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=1, interpolate_pos_encoding=True, image_expansion=2
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=1, interpolate_pos_encoding=True, image_expansion=0
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_image_pos_embeddings_interpolation_multiple_images(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=2, interpolate_pos_encoding=True, image_expansion=2
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=2, interpolate_pos_encoding=True, image_expansion=0
|
|
)
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_generate_with_image_pos_embeddings_interpolation_single_image(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=1, interpolate_pos_encoding=True, image_expansion=2
|
|
)
|
|
self.model_tester.create_and_check_model_gen(*config_and_inputs)
|
|
|
|
def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs(
|
|
num_images=2, interpolate_pos_encoding=True, image_expansion=2
|
|
)
|
|
self.model_tester.create_and_check_model_gen(*config_and_inputs)
|
|
|
|
def test_cross_attention_gates(self):
|
|
config, inputs_w_same_img, inputs_w_0_img_attn = self.model_tester.prepare_config_and_inputs_gate_tests()
|
|
|
|
model = IdeficsModel(config=config).to(torch_device)
|
|
model.eval()
|
|
test_1_results = []
|
|
for inputs in inputs_w_same_img:
|
|
with torch.no_grad():
|
|
last_hidden_states = model(**inputs).last_hidden_state
|
|
last_hidden_states = model(**inputs).last_hidden_state
|
|
test_1_results.append(last_hidden_states)
|
|
self.assertNotEqual(test_1_results[0].sum().item(), test_1_results[1].sum().item())
|
|
|
|
test_2_results = []
|
|
for inputs in inputs_w_0_img_attn:
|
|
with torch.no_grad():
|
|
last_hidden_states = model(**inputs).last_hidden_state
|
|
test_2_results.append(last_hidden_states)
|
|
self.assertEqual(test_2_results[0].sum().item(), test_2_results[1].sum().item())
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
# IdeficsModel does not support training, users should use
|
|
# IdeficsForVisionText2Text for this purpose
|
|
if model_class == IdeficsModel:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
# IdeficsModel does not support training, users should use
|
|
# IdeficsForVisionText2Text for this purpose
|
|
if model_class == IdeficsModel:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.use_cache = False
|
|
config.return_dict = True
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.gradient_checkpointing_enable()
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
return
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
|
|
self.assertTrue(attentions[0] is None)
|
|
out_len = len(outputs)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
self.assertEqual(out_len + 1, len(outputs))
|
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
|
|
self.assertTrue(self_attentions[0] is None)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
seq_length = self.model_tester.seq_length
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
@is_pt_tf_cross_test
|
|
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
|
|
self.has_attentions = False
|
|
super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "HuggingFaceM4/idefics-9b"
|
|
model = IdeficsModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@require_torch_sdpa
|
|
@slow
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
self.skipTest("Idefics has a hard requirement on SDPA, skipping this test")
|
|
|
|
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
|
|
@require_torch
|
|
class IdeficsForVisionText2TextTest(IdeficsModelTest, unittest.TestCase):
|
|
all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()
|
|
|
|
def setUp(self):
|
|
self.model_tester = IdeficsModelTester(
|
|
self,
|
|
modality_type_vocab_size=3,
|
|
)
|
|
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
|
|
|
|
@unittest.skip("We only test the model that takes in multiple images")
|
|
def test_model(self):
|
|
pass
|
|
|
|
@unittest.skip("We only test the model that takes in multiple images")
|
|
def test_for_token_classification(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
|
|
@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
|
|
@require_torch
|
|
@require_vision
|
|
class IdeficsModelIntegrationTest(TestCasePlus):
|
|
@cached_property
|
|
def default_processor(self):
|
|
return (
|
|
IdeficsProcessor.from_pretrained("HuggingFaceM4/idefics-9b", revision="refs/pr/11")
|
|
if is_vision_available()
|
|
else None
|
|
)
|
|
|
|
@require_bitsandbytes
|
|
@slow
|
|
def test_inference_natural_language_visual_reasoning(self):
|
|
cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png"
|
|
cats_image_obj = Image.open(cat_image_path) # 2 cats
|
|
dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"
|
|
|
|
prompts = [
|
|
[
|
|
"User:",
|
|
dogs_image_url,
|
|
"Describe this image.\nAssistant: An image of two dogs.\n",
|
|
"User:",
|
|
cats_image_obj,
|
|
"Describe this image.\nAssistant:",
|
|
],
|
|
[
|
|
"User:",
|
|
cats_image_obj,
|
|
"Describe this image.\nAssistant: An image of two kittens.\n",
|
|
"User:",
|
|
dogs_image_url,
|
|
"Describe this image.\nAssistant:",
|
|
],
|
|
]
|
|
|
|
# the CI gpu is small so using quantization to fit
|
|
quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype="float16",
|
|
)
|
|
model = IdeficsForVisionText2Text.from_pretrained(
|
|
"HuggingFaceM4/idefics-9b", quantization_config=quantization_config, device_map="auto"
|
|
)
|
|
processor = self.default_processor
|
|
inputs = processor(prompts, return_tensors="pt", padding="longest").to(torch_device)
|
|
generated_ids = model.generate(**inputs, max_length=100)
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
# keep for debugging
|
|
for i, t in enumerate(generated_text):
|
|
t = bytes(t, "utf-8").decode("unicode_escape")
|
|
print(f"{i}:\n{t}\n")
|
|
|
|
self.assertIn("image of two cats", generated_text[0])
|
|
self.assertIn("image of two dogs", generated_text[1])
|