transformers/tests/models/ibert/test_modeling_ibert.py

739 lines
31 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
from transformers import IBertConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
)
from transformers.models.ibert.modeling_ibert import (
IBertEmbeddings,
IntGELU,
IntLayerNorm,
IntSoftmax,
QuantAct,
QuantEmbedding,
QuantLinear,
create_position_ids_from_input_ids,
)
class IBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return IBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
quant_mode=True,
)
def get_pipeline_config(self):
config = self.get_config()
config.vocab_size = 300
return config
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = IBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = IBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = IBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class IBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
test_pruning = False
test_torchscript = False
test_head_masking = False
test_resize_embeddings = False
all_model_classes = (
(
IBertForMaskedLM,
IBertModel,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertForMultipleChoice,
IBertForQuestionAnswering,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": IBertModel,
"fill-mask": IBertForMaskedLM,
"question-answering": IBertForQuestionAnswering,
"text-classification": IBertForSequenceClassification,
"token-classification": IBertForTokenClassification,
"zero-shot": IBertForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = IBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=IBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# I-BERT only supports absolute embedding
for type in ["absolute"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "kssteven/ibert-roberta-base"
model = IBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_create_position_ids_respects_padding_index(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is IBertEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
model = IBertEmbeddings(config=config)
input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]])
expected_positions = torch.as_tensor(
[[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]]
)
position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
def test_create_position_ids_from_inputs_embeds(self):
"""Ensure that the default position ids only assign a sequential . This is a regression
test for https://github.com/huggingface/transformers/issues/1761
The position ids should be masked with the embedding object's padding index. Therefore, the
first available non-padding position index is IBertEmbeddings.padding_idx + 1
"""
config = self.model_tester.prepare_config_and_inputs()[0]
embeddings = IBertEmbeddings(config=config)
inputs_embeds = torch.empty(2, 4, 30)
expected_single_positions = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions])
position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds)
self.assertEqual(position_ids.shape, expected_positions.shape)
self.assertTrue(torch.all(torch.eq(position_ids, expected_positions)))
# Override
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), QuantEmbedding)
model.set_input_embeddings(nn.Embedding(10, 10))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
# Override
def test_feed_forward_chunking(self):
pass # I-BERT does not support chunking
# Override
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
embed, embed_scaling_factor = wte(input_ids)
inputs["inputs_embeds"] = embed
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@unittest.skip("ibert overrides scaling to None if inputs_embeds")
def test_inputs_embeds_matches_input_ids(self):
pass
@require_torch
class IBertModelIntegrationTest(unittest.TestCase):
def test_quant_embedding(self):
weight_bit = 8
embedding = QuantEmbedding(2, 4, quant_mode=True, weight_bit=weight_bit)
embedding_weight = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
embedding.weight = nn.Parameter(embedding_weight)
expected_scaling_factor = embedding_weight.abs().max() / (2 ** (weight_bit - 1) - 1)
x, x_scaling_factor = embedding(torch.tensor(0))
y, y_scaling_factor = embedding(torch.tensor(1))
# scaling factor should follow the symmetric quantization rule
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4))
self.assertTrue(torch.allclose(x_scaling_factor, expected_scaling_factor, atol=1e-4))
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
self.assertTrue(torch.allclose(x, embedding_weight[0], atol=expected_scaling_factor))
self.assertTrue(torch.allclose(y, embedding_weight[1], atol=expected_scaling_factor))
def test_quant_act(self):
def _test_range():
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True)
# First pass
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
x_scaling_factor = torch.tensor(1.0)
y, y_scaling_factor = act(x, x_scaling_factor)
y_int = y / y_scaling_factor
# After the first pass, x_min and x_max should be initialized with x.min() and x.max()
expected_x_min, expected_x_max = x.min(), x.max()
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
# scaling factor should follow the symmetric quantization rule
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs())
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1)
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor))
# output should be integer
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4))
# Second Pass
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 2
x_scaling_factor = torch.tensor(1.0)
y, y_scaling_factor = act(x, x_scaling_factor)
y_int = y / y_scaling_factor
# From the second pass, x_min and x_max should be updated with moving average
expected_x_min = expected_x_min * act_range_momentum + x.min() * (1 - act_range_momentum)
expected_x_max = expected_x_max * act_range_momentum + x.max() * (1 - act_range_momentum)
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
# scaling factor should follow the symmetric quantization rule
expected_range = torch.max(expected_x_min.abs(), expected_x_max.abs())
expected_scaling_factor = expected_range / (2 ** (activation_bit - 1) - 1)
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
# quantization error should not exceed the scaling factor
x = x.clamp(min=-expected_range, max=expected_range)
self.assertTrue(torch.allclose(x, y, atol=expected_scaling_factor))
# output should be integer
self.assertTrue(torch.allclose(y_int, y_int.round(), atol=1e-4))
# Third pass, with eval()
act.eval()
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]]) * 3
# In eval mode, min/max and scaling factor must be fixed
self.assertTrue(torch.allclose(act.x_min, expected_x_min, atol=1e-4))
self.assertTrue(torch.allclose(act.x_max, expected_x_max, atol=1e-4))
self.assertTrue(torch.allclose(y_scaling_factor, expected_scaling_factor, atol=1e-4))
def _test_identity():
# test if identity and identity_scaling_factor are given
# should add the input values
act = QuantAct(activation_bit, act_range_momentum, quant_mode=True)
x = torch.tensor([[-1.0, -2.0, -3.0, -4.0], [5.0, 6.0, 7.0, 8.0]])
y = torch.tensor([[6.0, -7.0, 1.0, -2.0], [3.0, -4.0, -8.0, 5.0]])
x_scaling_factor = torch.tensor(1.0)
y_scaling_factor = torch.tensor(0.5)
z, z_scaling_factor = act(x, x_scaling_factor, y, y_scaling_factor)
z_int = z / z_scaling_factor
self.assertTrue(torch.allclose(x + y, z, atol=0.1))
self.assertTrue(torch.allclose(z_int, z_int.round(), atol=1e-4))
activation_bit = 8
act_range_momentum = 0.95
_test_range()
_test_identity()
def test_quant_linear(self):
def _test(per_channel):
linear_q = QuantLinear(2, 4, quant_mode=True, per_channel=per_channel, weight_bit=weight_bit)
linear_dq = QuantLinear(2, 4, quant_mode=False, per_channel=per_channel, weight_bit=weight_bit)
linear_weight = torch.tensor([[-1.0, 2.0, 3.0, -4.0], [5.0, -6.0, -7.0, 8.0]]).T
linear_q.weight = nn.Parameter(linear_weight)
linear_dq.weight = nn.Parameter(linear_weight)
q, q_scaling_factor = linear_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq, dq_scaling_factor = linear_dq(x, x_scaling_factor)
if per_channel:
q_max = linear_weight.abs().max(dim=1).values
else:
q_max = linear_weight.abs().max()
expected_scaling_factor = q_max / (2 ** (weight_bit - 1) - 1)
# scaling factor should follow the symmetric quantization rule
self.assertTrue(torch.allclose(linear_q.fc_scaling_factor, expected_scaling_factor, atol=1e-4))
# output of the normal linear layer and the quantized linear layer should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized linear layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
weight_bit = 8
x = torch.tensor([[2.0, -5.0], [-3.0, 4.0]])
x_scaling_factor = torch.tensor([1.0])
_test(True)
_test(False)
def test_int_gelu(self):
gelu_q = IntGELU(quant_mode=True)
gelu_dq = nn.GELU()
x_int = torch.arange(-10000, 10001, 1)
x_scaling_factor = torch.tensor(0.001)
x = x_int * x_scaling_factor
q, q_scaling_factor = gelu_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = gelu_dq(x)
# output of the normal GELU and the quantized GELU should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
def test_force_dequant_gelu(self):
x_int = torch.arange(-10000, 10001, 1)
x_scaling_factor = torch.tensor(0.001)
x = x_int * x_scaling_factor
gelu_dq = IntGELU(quant_mode=False)
gelu_fdqs_dict = {
True: [
IntGELU(quant_mode=True, force_dequant="nonlinear"),
IntGELU(quant_mode=True, force_dequant="gelu"),
],
False: [
IntGELU(quant_mode=True, force_dequant="none"),
IntGELU(quant_mode=True, force_dequant="softmax"),
IntGELU(quant_mode=True, force_dequant="layernorm"),
],
}
dq, dq_scaling_factor = gelu_dq(x, x_scaling_factor)
for label, gelu_fdqs in gelu_fdqs_dict.items():
for gelu_fdq in gelu_fdqs:
q, q_scaling_factor = gelu_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def test_int_softmax(self):
output_bit = 8
softmax_q = IntSoftmax(output_bit, quant_mode=True)
softmax_dq = nn.Softmax()
def _test(array):
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
q, q_scaling_factor = softmax_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = softmax_dq(x)
# output of the normal Softmax and the quantized Softmax should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
# Output of the quantize Softmax should not exceed the output_bit
self.assertTrue(q.abs().max() < 2**output_bit)
array = [[i + j for j in range(10)] for i in range(-10, 10)]
_test(array)
array = [[i + j for j in range(50)] for i in range(-10, 10)]
_test(array)
array = [[i + 100 * j for j in range(2)] for i in range(-10, 10)]
_test(array)
def test_force_dequant_softmax(self):
output_bit = 8
array = [[i + j for j in range(10)] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
softmax_dq = IntSoftmax(output_bit, quant_mode=False)
softmax_fdqs_dict = {
True: [
IntSoftmax(output_bit, quant_mode=True, force_dequant="nonlinear"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="softmax"),
],
False: [
IntSoftmax(output_bit, quant_mode=True, force_dequant="none"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="gelu"),
IntSoftmax(output_bit, quant_mode=True, force_dequant="layernorm"),
],
}
dq, dq_scaling_factor = softmax_dq(x, x_scaling_factor)
for label, softmax_fdqs in softmax_fdqs_dict.items():
for softmax_fdq in softmax_fdqs:
q, q_scaling_factor = softmax_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def test_int_layernorm(self):
output_bit = 8
# some random matrix
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
ln_q = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit)
ln_dq = nn.LayerNorm(x.shape[1:], 1e-5)
ln_q.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_q.bias = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:]))
q, q_scaling_factor = ln_q(x, x_scaling_factor)
q_int = q / q_scaling_factor
dq = ln_dq(x)
# output of the normal LN and the quantized LN should be similar
self.assertTrue(torch.allclose(q, dq, atol=0.5))
# output of the quantized GELU layer should be integer
self.assertTrue(torch.allclose(q_int, q_int.round(), atol=1e-4))
def test_force_dequant_layernorm(self):
output_bit = 8
array = [[[i * j * j + j for j in range(5, 15)]] for i in range(-10, 10)]
x_int = torch.tensor(array)
x_scaling_factor = torch.tensor(0.1)
x = x_int * x_scaling_factor
ln_dq = IntLayerNorm(x.shape[1:], 1e-5, quant_mode=False, output_bit=output_bit)
ln_fdqs_dict = {
True: [
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="nonlinear"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="layernorm"),
],
False: [
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="none"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="gelu"),
IntLayerNorm(x.shape[1:], 1e-5, quant_mode=True, output_bit=output_bit, force_dequant="softmax"),
],
}
ln_dq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_dq.bias = nn.Parameter(torch.ones(x.shape[1:]))
dq, dq_scaling_factor = ln_dq(x, x_scaling_factor)
for label, ln_fdqs in ln_fdqs_dict.items():
for ln_fdq in ln_fdqs:
ln_fdq.weight = nn.Parameter(torch.ones(x.shape[1:]))
ln_fdq.bias = nn.Parameter(torch.ones(x.shape[1:]))
q, q_scaling_factor = ln_fdq(x, x_scaling_factor)
if label:
self.assertTrue(torch.allclose(q, dq, atol=1e-4))
else:
self.assertFalse(torch.allclose(q, dq, atol=1e-4))
def quantize(self, model):
# Helper function that quantizes the given model
# Recursively convert all the `quant_mode` attributes as `True`
if hasattr(model, "quant_mode"):
model.quant_mode = True
elif type(model) == nn.Sequential:
for n, m in model.named_children():
self.quantize(m)
elif type(model) == nn.ModuleList:
for n in model:
self.quantize(n)
else:
for attr in dir(model):
mod = getattr(model, attr)
if isinstance(mod, nn.Module) and mod != model:
self.quantize(mod)
@slow
def test_inference_masked_lm(self):
# I-BERT should be "equivalent" to RoBERTa if not quantized
# Test coped from `test_modeling_roberta.py`
model = IBertForMaskedLM.from_pretrained("kssteven/ibert-roberta-base")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, 11, 50265))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
# I-BERT should be "similar" to RoBERTa if quantized
self.quantize(model)
output = model(input_ids)[0]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=0.1))
@slow
def test_inference_classification_head(self):
# I-BERT should be "equivalent" to RoBERTa if not quantized
# Test coped from `test_modeling_roberta.py`
model = IBertForSequenceClassification.from_pretrained("kssteven/ibert-roberta-large-mnli")
input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, 3))
self.assertEqual(output.shape, expected_shape)
expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]])
self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
# I-BERT should be "similar" to RoBERTa if quantized
self.quantize(model)
output = model(input_ids)[0]
self.assertEqual(output.shape, expected_shape)
self.assertTrue(torch.allclose(output, expected_tensor, atol=0.1))