698 lines
29 KiB
Python
698 lines
29 KiB
Python
# coding=utf-8
|
||
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
|
||
import datetime
|
||
import unittest
|
||
|
||
import pytest
|
||
|
||
from transformers import BitsAndBytesConfig, GPTJConfig, is_torch_available
|
||
from transformers.testing_utils import (
|
||
require_bitsandbytes,
|
||
require_flash_attn,
|
||
require_torch,
|
||
require_torch_gpu,
|
||
slow,
|
||
tooslow,
|
||
torch_device,
|
||
)
|
||
|
||
from ...generation.test_utils import GenerationTesterMixin
|
||
from ...test_configuration_common import ConfigTester
|
||
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||
|
||
|
||
if is_torch_available():
|
||
import torch
|
||
|
||
from transformers import (
|
||
AutoTokenizer,
|
||
GPTJForCausalLM,
|
||
GPTJForQuestionAnswering,
|
||
GPTJForSequenceClassification,
|
||
GPTJModel,
|
||
)
|
||
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12
|
||
else:
|
||
is_torch_greater_or_equal_than_1_12 = False
|
||
|
||
|
||
class GPTJModelTester:
|
||
def __init__(
|
||
self,
|
||
parent,
|
||
batch_size=14,
|
||
seq_length=7,
|
||
is_training=True,
|
||
use_token_type_ids=True,
|
||
use_input_mask=True,
|
||
use_labels=True,
|
||
use_mc_token_ids=True,
|
||
vocab_size=99,
|
||
hidden_size=32,
|
||
rotary_dim=4,
|
||
num_hidden_layers=2,
|
||
num_attention_heads=4,
|
||
intermediate_size=37,
|
||
hidden_act="gelu",
|
||
hidden_dropout_prob=0.0,
|
||
attention_probs_dropout_prob=0.0,
|
||
max_position_embeddings=512,
|
||
type_vocab_size=16,
|
||
type_sequence_label_size=2,
|
||
initializer_range=0.02,
|
||
num_labels=3,
|
||
num_choices=4,
|
||
):
|
||
self.parent = parent
|
||
self.batch_size = batch_size
|
||
self.seq_length = seq_length
|
||
self.is_training = is_training
|
||
self.use_token_type_ids = use_token_type_ids
|
||
self.use_input_mask = use_input_mask
|
||
self.use_labels = use_labels
|
||
self.use_mc_token_ids = use_mc_token_ids
|
||
self.vocab_size = vocab_size
|
||
self.hidden_size = hidden_size
|
||
self.rotary_dim = rotary_dim
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
self.intermediate_size = intermediate_size
|
||
self.hidden_act = hidden_act
|
||
self.hidden_dropout_prob = hidden_dropout_prob
|
||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.type_vocab_size = type_vocab_size
|
||
self.type_sequence_label_size = type_sequence_label_size
|
||
self.initializer_range = initializer_range
|
||
self.num_labels = num_labels
|
||
self.num_choices = num_choices
|
||
self.scope = None
|
||
self.bos_token_id = vocab_size - 1
|
||
self.eos_token_id = vocab_size - 1
|
||
self.pad_token_id = vocab_size - 1
|
||
|
||
def get_large_model_config(self):
|
||
return GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")
|
||
|
||
def prepare_config_and_inputs(self):
|
||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||
|
||
input_mask = None
|
||
if self.use_input_mask:
|
||
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||
|
||
token_type_ids = None
|
||
if self.use_token_type_ids:
|
||
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
||
|
||
mc_token_ids = None
|
||
if self.use_mc_token_ids:
|
||
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
||
|
||
sequence_labels = None
|
||
token_labels = None
|
||
choice_labels = None
|
||
if self.use_labels:
|
||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
||
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
||
|
||
config = self.get_config()
|
||
|
||
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
||
|
||
return (
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
)
|
||
|
||
def get_config(self):
|
||
return GPTJConfig(
|
||
vocab_size=self.vocab_size,
|
||
n_embd=self.hidden_size,
|
||
n_layer=self.num_hidden_layers,
|
||
n_head=self.num_attention_heads,
|
||
intermediate_size=self.intermediate_size,
|
||
hidden_act=self.hidden_act,
|
||
hidden_dropout_prob=self.hidden_dropout_prob,
|
||
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
||
n_positions=self.max_position_embeddings,
|
||
type_vocab_size=self.type_vocab_size,
|
||
initializer_range=self.initializer_range,
|
||
use_cache=True,
|
||
bos_token_id=self.bos_token_id,
|
||
eos_token_id=self.eos_token_id,
|
||
pad_token_id=self.pad_token_id,
|
||
rotary_dim=self.rotary_dim,
|
||
)
|
||
|
||
def get_pipeline_config(self):
|
||
config = self.get_config()
|
||
config.vocab_size = 300
|
||
return config
|
||
|
||
def prepare_config_and_inputs_for_decoder(self):
|
||
(
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = self.prepare_config_and_inputs()
|
||
|
||
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
||
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
||
|
||
return (
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
)
|
||
|
||
def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTJModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
|
||
result = model(input_ids, token_type_ids=token_type_ids)
|
||
result = model(input_ids)
|
||
|
||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||
self.parent.assertEqual(len(result.past_key_values), config.n_layer)
|
||
|
||
def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTJModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
|
||
outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
|
||
outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)
|
||
|
||
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
||
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
||
|
||
output, past = outputs.to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
|
||
|
||
# append to next input_ids and token_type_ids
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
|
||
|
||
output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
|
||
output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
|
||
"last_hidden_state"
|
||
]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_gptj_model_attention_mask_past(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||
):
|
||
model = GPTJModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# create attention mask
|
||
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
||
half_seq_length = self.seq_length // 2
|
||
attn_mask[:, half_seq_length:] = 0
|
||
|
||
# first forward pass
|
||
output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||
|
||
# change a random masked slice from input_ids
|
||
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
|
||
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
|
||
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
|
||
|
||
# append to next input_ids and attn_mask
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
attn_mask = torch.cat(
|
||
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
|
||
dim=1,
|
||
)
|
||
|
||
# get two different outputs
|
||
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
|
||
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_gptj_model_past_large_inputs(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||
):
|
||
model = GPTJModel(config=config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
# first forward pass
|
||
outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
|
||
|
||
output, past = outputs.to_tuple()
|
||
|
||
# create hypothetical next token and extent to next_input_ids
|
||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||
next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
|
||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||
|
||
# append to next input_ids and token_type_ids
|
||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
|
||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||
|
||
output_from_no_past = model(
|
||
next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
|
||
)["last_hidden_state"]
|
||
output_from_past = model(
|
||
next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
|
||
)["last_hidden_state"]
|
||
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])
|
||
|
||
# select random slice
|
||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||
|
||
# test that outputs are equal for slice
|
||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||
|
||
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
||
model = GPTJForCausalLM(config)
|
||
model.to(torch_device)
|
||
model.eval()
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
|
||
self.parent.assertEqual(result.loss.shape, ())
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
|
||
def create_and_check_forward_and_backwards(
|
||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
|
||
):
|
||
model = GPTJForCausalLM(config)
|
||
if gradient_checkpointing:
|
||
model.gradient_checkpointing_enable()
|
||
model.to(torch_device)
|
||
|
||
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
|
||
self.parent.assertEqual(result.loss.shape, ())
|
||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||
result.loss.backward()
|
||
|
||
def prepare_config_and_inputs_for_common(self):
|
||
config_and_inputs = self.prepare_config_and_inputs()
|
||
|
||
(
|
||
config,
|
||
input_ids,
|
||
input_mask,
|
||
head_mask,
|
||
token_type_ids,
|
||
mc_token_ids,
|
||
sequence_labels,
|
||
token_labels,
|
||
choice_labels,
|
||
) = config_and_inputs
|
||
|
||
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
|
||
|
||
return config, inputs_dict
|
||
|
||
|
||
@require_torch
|
||
class GPTJModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||
all_model_classes = (
|
||
(GPTJModel, GPTJForCausalLM, GPTJForSequenceClassification, GPTJForQuestionAnswering)
|
||
if is_torch_available()
|
||
else ()
|
||
)
|
||
all_generative_model_classes = (GPTJForCausalLM,) if is_torch_available() else ()
|
||
pipeline_model_mapping = (
|
||
{
|
||
"feature-extraction": GPTJModel,
|
||
"question-answering": GPTJForQuestionAnswering,
|
||
"text-classification": GPTJForSequenceClassification,
|
||
"text-generation": GPTJForCausalLM,
|
||
"zero-shot": GPTJForSequenceClassification,
|
||
}
|
||
if is_torch_available()
|
||
else {}
|
||
)
|
||
fx_compatible = True
|
||
test_pruning = False
|
||
test_missing_keys = False
|
||
test_model_parallel = False
|
||
test_head_masking = False
|
||
|
||
@unittest.skipIf(
|
||
not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
|
||
)
|
||
def test_torch_fx(self):
|
||
super().test_torch_fx()
|
||
|
||
@unittest.skipIf(
|
||
not is_torch_greater_or_equal_than_1_12, reason="PR #22069 made changes that require torch v1.12+."
|
||
)
|
||
def test_torch_fx_output_loss(self):
|
||
super().test_torch_fx_output_loss()
|
||
|
||
# TODO: Fix the failed tests
|
||
def is_pipeline_test_to_skip(
|
||
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
||
):
|
||
if (
|
||
pipeline_test_casse_name == "QAPipelineTests"
|
||
and tokenizer_name is not None
|
||
and not tokenizer_name.endswith("Fast")
|
||
):
|
||
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
|
||
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
|
||
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
|
||
return True
|
||
|
||
return False
|
||
|
||
# special case for DoubleHeads model
|
||
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
||
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
||
return inputs_dict
|
||
|
||
def setUp(self):
|
||
self.model_tester = GPTJModelTester(self)
|
||
self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37)
|
||
|
||
def test_config(self):
|
||
self.config_tester.run_common_tests()
|
||
|
||
def test_gptj_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gptj_model(*config_and_inputs)
|
||
|
||
def test_gptj_model_past(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gptj_model_past(*config_and_inputs)
|
||
|
||
def test_gptj_model_att_mask_past(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs)
|
||
|
||
def test_gptj_model_past_large_inputs(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs)
|
||
|
||
def test_gptj_lm_head_model(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
|
||
|
||
def test_gptj_gradient_checkpointing(self):
|
||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
|
||
|
||
@tooslow
|
||
def test_batch_generation(self):
|
||
# Marked as @tooslow due to GPU OOM
|
||
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
|
||
model.to(torch_device)
|
||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
|
||
|
||
tokenizer.padding_side = "left"
|
||
|
||
# Define PAD Token = EOS Token = 50256
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
model.config.pad_token_id = model.config.eos_token_id
|
||
|
||
# use different length sentences to test batching
|
||
sentences = [
|
||
"Hello, my dog is a little",
|
||
"Today, I",
|
||
]
|
||
|
||
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
|
||
input_ids = inputs["input_ids"].to(torch_device)
|
||
token_type_ids = torch.cat(
|
||
[
|
||
input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
|
||
input_ids.new_full((input_ids.shape[0], 1), 500),
|
||
],
|
||
dim=-1,
|
||
)
|
||
|
||
outputs = model.generate(
|
||
input_ids=input_ids,
|
||
attention_mask=inputs["attention_mask"].to(torch_device),
|
||
)
|
||
|
||
outputs_tt = model.generate(
|
||
input_ids=input_ids,
|
||
attention_mask=inputs["attention_mask"].to(torch_device),
|
||
token_type_ids=token_type_ids,
|
||
)
|
||
|
||
inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
|
||
output_non_padded = model.generate(input_ids=inputs_non_padded)
|
||
|
||
num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
|
||
inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
|
||
output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)
|
||
|
||
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||
batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
|
||
non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
|
||
padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
|
||
|
||
expected_output_sentence = [
|
||
"Hello, my dog is a little over a year old and has been diagnosed with a heart murmur",
|
||
"Today, I’m going to talk about the most important thing in the",
|
||
]
|
||
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
||
self.assertTrue(batch_out_sentence_tt != batch_out_sentence) # token_type_ids should change output
|
||
self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])
|
||
|
||
@slow
|
||
def test_model_from_pretrained(self):
|
||
model_name = "EleutherAI/gpt-j-6B"
|
||
model = GPTJModel.from_pretrained(model_name, revision="float16", torch_dtype=torch.float16)
|
||
self.assertIsNotNone(model)
|
||
|
||
@require_flash_attn
|
||
@require_torch_gpu
|
||
@require_bitsandbytes
|
||
@pytest.mark.flash_attn_test
|
||
@slow
|
||
def test_flash_attn_2_generate_padding_right(self):
|
||
"""
|
||
Overwritting the common test as the test is flaky on tiny models
|
||
"""
|
||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6b")
|
||
|
||
texts = ["hi", "Hello this is a very long sentence"]
|
||
expected_outputs = [
|
||
"hi<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>Q: I have a question about the new version of the game. I have a question about the",
|
||
"Hello this is a very long sentence.\n\nA:\n\nI think the best way to understand this is to think of it",
|
||
]
|
||
|
||
tokenizer.padding_side = "right"
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
|
||
inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)
|
||
|
||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||
|
||
model = GPTJForCausalLM.from_pretrained(
|
||
"EleutherAI/gpt-j-6b",
|
||
device_map={"": 0},
|
||
attn_implementation="flash_attention_2",
|
||
revision="float16",
|
||
torch_dtype=torch.float16,
|
||
quantization_config=quantization_config,
|
||
)
|
||
|
||
output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||
output_fa_2 = tokenizer.batch_decode(output_fa_2)
|
||
|
||
self.assertListEqual(expected_outputs, output_fa_2)
|
||
|
||
|
||
@require_torch
|
||
class GPTJModelLanguageGenerationTest(unittest.TestCase):
|
||
@tooslow
|
||
def test_lm_generate_gptj(self):
|
||
# Marked as @tooslow due to GPU OOM
|
||
for checkpointing in [True, False]:
|
||
model = GPTJForCausalLM.from_pretrained(
|
||
"EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
|
||
)
|
||
if checkpointing:
|
||
model.gradient_checkpointing_enable()
|
||
else:
|
||
model.gradient_checkpointing_disable()
|
||
model.to(torch_device)
|
||
input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device) # The dog
|
||
# The dog is a man's best friend. It is a loyal companion, and it is a friend
|
||
expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545] # fmt: skip
|
||
output_ids = model.generate(input_ids, do_sample=False)
|
||
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
|
||
|
||
@tooslow
|
||
def test_gptj_sample(self):
|
||
# Marked as @tooslow due to GPU OOM (issue #13676)
|
||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
|
||
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16)
|
||
model.to(torch_device)
|
||
|
||
torch.manual_seed(0)
|
||
tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
|
||
input_ids = tokenized.input_ids.to(torch_device)
|
||
output_ids = model.generate(input_ids, do_sample=True)
|
||
output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
||
|
||
token_type_ids = tokenized.token_type_ids.to(torch_device)
|
||
output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
|
||
output_seq_tt = model.generate(
|
||
input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
|
||
)
|
||
output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
|
||
output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)
|
||
|
||
if torch_device != "cpu":
|
||
# currently this expect value is only for `cuda`
|
||
EXPECTED_OUTPUT_STR = (
|
||
"Today is a nice day and I've already been enjoying it. I walked to work with my wife"
|
||
)
|
||
else:
|
||
EXPECTED_OUTPUT_STR = "Today is a nice day and one of those days that feels a bit more alive. I am ready"
|
||
|
||
self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
|
||
self.assertTrue(
|
||
all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
|
||
) # token_type_ids should change output
|
||
|
||
@slow
|
||
def test_gptj_sample_max_time(self):
|
||
tokenizer = AutoTokenizer.from_pretrained("anton-l/gpt-j-tiny-random")
|
||
model = GPTJForCausalLM.from_pretrained("anton-l/gpt-j-tiny-random")
|
||
model.to(torch_device)
|
||
|
||
torch.manual_seed(0)
|
||
tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
|
||
input_ids = tokenized.input_ids.to(torch_device)
|
||
|
||
MAX_TIME = 0.5
|
||
|
||
start = datetime.datetime.now()
|
||
model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
|
||
duration = datetime.datetime.now() - start
|
||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||
|
||
start = datetime.datetime.now()
|
||
model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
|
||
duration = datetime.datetime.now() - start
|
||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||
|
||
start = datetime.datetime.now()
|
||
model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
|
||
duration = datetime.datetime.now() - start
|
||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||
|
||
start = datetime.datetime.now()
|
||
model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
|
||
duration = datetime.datetime.now() - start
|
||
self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
|
||
self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||
|
||
start = datetime.datetime.now()
|
||
model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
|
||
duration = datetime.datetime.now() - start
|
||
self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
|
||
|
||
@tooslow
|
||
def test_contrastive_search_gptj(self):
|
||
article = (
|
||
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and "
|
||
"research laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
||
model = GPTJForCausalLM.from_pretrained(
|
||
"EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16
|
||
).to(torch_device)
|
||
input_ids = tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
|
||
|
||
outputs = model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)
|
||
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||
|
||
self.assertListEqual(
|
||
generated_text,
|
||
[
|
||
"DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
|
||
"laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
|
||
"United Kingdom with offices in Mountain View, San Francisco, New York City, Paris, Tokyo, Seoul, "
|
||
"Beijing, Singapore, Tel Aviv, Dublin, Sydney, and Melbourne.[1]\n\nContents\n\nIn 2010, Google's "
|
||
"parent company, Alphabet, announced a $500 million investment in DeepMind, with the aim of creating "
|
||
"a company that would apply deep learning to problems in healthcare, energy, transportation, and "
|
||
"other areas.[2]\n\nOn April 23, 2014, Google announced that it had acquired DeepMind for $400 "
|
||
"million in cash and stock.[3] The acquisition was seen as a way for Google to enter the "
|
||
"fast-growing field of artificial intelligence (AI), which it had so far avoided due to concerns "
|
||
'about ethical and social implications.[4] Google co-founder Sergey Brin said that he was "thrilled" '
|
||
'to have acquired DeepMind, and that it would "help us push the boundaries of AI even further."'
|
||
"[5]\n\nDeepMind's founders, Demis Hassabis and Mustafa Suleyman, were joined by a number of Google "
|
||
"employees"
|
||
],
|
||
)
|