transformers/tests/models/gemma/test_tokenization_gemma.py

503 lines
23 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
from datasets import load_dataset
from transformers import (
AddedToken,
GemmaTokenizer,
GemmaTokenizerFast,
is_torch_available,
)
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_jinja,
require_read_token,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
pass
@require_sentencepiece
@require_tokenizers
class GemmaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "google/gemma-7b"
tokenizer_class = GemmaTokenizer
rust_tokenizer_class = GemmaTokenizerFast
test_rust_tokenizer = False
test_sentencepiece = True
from_pretrained_kwargs = {}
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained(self.tmpdirname)
@require_torch
def test_batch_tokenization(self):
if not self.test_seq2seq:
return
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
try:
batch = tokenizer(
text=text,
max_length=3,
max_target_length=10,
return_tensors="pt",
)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1], 3)
# max_target_length will default to max_length if not specified
batch = tokenizer(text, max_length=3, return_tensors="pt")
self.assertEqual(batch.input_ids.shape[1], 3)
batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@slow
@require_read_token
def test_tokenizer_integration(self):
expected_encoding = {'input_ids': [[2, 158434, 591, 84193, 3836, 685, 6599, 31223, 235290, 140247, 578, 6599, 31223, 235290, 145139, 235290, 3491, 235275, 6572, 3311, 235290, 38197, 109959, 591, 25894, 235269, 162174, 235290, 235284, 235269, 1791, 6362, 12481, 235269, 1576, 18622, 235269, 2900, 1136, 86684, 235269, 29092, 4632, 16994, 604, 13146, 14944, 40371, 591, 19700, 235327, 235275, 578, 13146, 14944, 25511, 591, 235300, 12474, 235275, 675, 1163, 235248, 235304, 235284, 235340, 229903, 5377, 575, 235248, 235274, 235276, 235276, 235340, 17044, 578, 5271, 1061, 118345, 1865, 125247, 235269, 8745, 111226, 578, 176888, 235265], [2, 25894, 603, 6869, 577, 953, 235290, 8297, 5271, 209099, 41642, 774, 748, 78253, 2793, 731, 51506, 34346, 611, 2145, 2731, 578, 1833, 4807, 575, 832, 16630, 235265], [2, 651, 4320, 8426, 25341, 36271, 1163, 573, 27894, 5929, 235265]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="google/gemma-2b",
revision="",
padding=False,
)
@unittest.skip("worker 'gw4' crashed on CI, passing locally.")
def test_pickle_subword_regularization_tokenizer(self):
pass
@unittest.skip("worker 'gw4' crashed on CI, passing locally.")
def test_subword_regularization_tokenizer(self):
pass
@unittest.skip("Skipping")
def test_torch_encode_plus_sent_to_model(self):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class GemmaIntegrationTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
checkpoint_name = "hf-internal-testing/dummy-gemma"
cls.tokenizer: GemmaTokenizer = GemmaTokenizer.from_pretrained(
checkpoint_name, eos_token="<s>"
) # add this token
cls.rust_tokenizer = GemmaTokenizerFast.from_pretrained(
checkpoint_name, eos_token="<s>", from_slow=True
) # add this token
return cls
@require_torch
def integration_tests(self):
inputs = self.tokenizer(
["The following string should be properly encoded: Hello.", "But ird and ปี ird ด"],
return_tensors="pt",
)
self.assertEqual(
nested_simplify(inputs),
{
"input_ids": [
[2, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
[2, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
},
)
def test_fast_special_tokens(self):
slow_tokenizer = self.tokenizer
fast_tokenizer = self.rust_tokenizer
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [2, 235280, 6453, 2121]
fast_tokenizer.add_eos_token = False
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [2, 235280, 6453, 2121]
fast_tokenizer.add_eos_token = True
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [2, 235280, 6453, 2121, 204]
slow_tokenizer.add_eos_token = True
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [2, 235280, 6453, 2121, 204]
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
@unittest.skip("Not super important and always failing. Let's skip it")
@slow
def test_conversion(self):
# This is excruciatingly slow since it has to recreate the entire merge
# list from the original vocabulary in spm
self.rust_tokenizer.save_pretrained("./out")
with tempfile.TemporaryDirectory() as dirname:
self.rust_tokenizer.save_pretrained(dirname)
with open(os.path.join(dirname, "tokenizer.json"), "r") as f:
old_serialized = f.read()
new_tokenizer = convert_slow_tokenizer(self.tokenizer)
with tempfile.NamedTemporaryFile() as f:
new_tokenizer.save(f.name)
# Re-opening since `f` is in bytes.
new_serialized = open(f.name, "r").read()
with open("out_tokenizer.json", "w") as g:
g.write(new_serialized)
self.assertEqual(old_serialized, new_serialized)
def test_simple_encode_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
self.assertEqual(pyth_tokenizer.encode("This is a test"), [2, 1596, 603, 476, 2121])
self.assertEqual(rust_tokenizer.encode("This is a test"), [2, 1596, 603, 476, 2121])
self.assertEqual(pyth_tokenizer.decode([2, 1596, 603, 476, 2121], skip_special_tokens=True), "This is a test")
self.assertEqual(rust_tokenizer.decode([2, 1596, 603, 476, 2121], skip_special_tokens=True), "This is a test")
# bytefallback showcase
self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [2, 122182, 235710, 245467, 235427] ) # fmt: skip
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [2, 122182, 235710, 245467, 235427] ) # fmt: skip
self.assertEqual(
pyth_tokenizer.decode([2, 122182, 235710, 245467, 235427], skip_special_tokens=True),
"生活的真谛是",
)
self.assertEqual(
rust_tokenizer.decode([2, 122182, 235710, 245467, 235427], skip_special_tokens=True),
"生活的真谛是",
)
# Inner spaces showcase
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [2, 2151, 139, 4521])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2, 2151, 139, 4521])
self.assertEqual(pyth_tokenizer.decode([2, 2151, 139, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([2, 2151, 139, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [2, 2151, 140, 4521])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [2, 2151, 140, 4521])
self.assertEqual(pyth_tokenizer.decode([2, 2151, 140, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([2, 2151, 140, 4521], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode(""), [2])
self.assertEqual(rust_tokenizer.encode(""), [2])
self.assertEqual(pyth_tokenizer.encode(" "), [2, 235248])
self.assertEqual(rust_tokenizer.encode(" "), [2, 235248])
self.assertEqual(pyth_tokenizer.encode(" "), [2, 139])
self.assertEqual(rust_tokenizer.encode(" "), [2, 139])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [2, 25957])
self.assertEqual(rust_tokenizer.encode(" Hello"), [2, 25957])
def test_no_differences_decode(self):
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.decode([869]), "og")
self.assertEqual(rust_tokenizer.decode([869]), "og")
self.assertEqual(pyth_tokenizer.decode([30112, 869]), " expenditureog")
self.assertEqual(rust_tokenizer.decode([30112, 869]), " expenditureog")
def test_no_differences_special_tokens(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [2])
self.assertEqual(rust_tokenizer.encode(""), [2])
self.assertEqual(pyth_tokenizer.encode("<s>"), [2, 204])
self.assertEqual(rust_tokenizer.encode("<s>"), [2, 204])
@unittest.skipIf(
os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
"RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
)
def test_integration_test_xnli(self):
import tqdm
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(
encoded1,
encoded2,
msg="Hint: the following tokenization diff were obtained for slow vs fast:\n "
f"elements in slow: {set(pyth_tokenizer.tokenize(string))-set(rust_tokenizer.tokenize(string))} \nvs\n "
f"elements in fast: {set(rust_tokenizer.tokenize(string))-set(pyth_tokenizer.tokenize(string))} \n\n{string}",
)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded1, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("xnli", "all_languages")
for item in tqdm.tqdm(dataset["train"]):
for string in item["premise"].values():
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2, msg=f"failed on {string}")
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
def test_special_token_special_word(self):
# the word inform should be split as ['in', 'form']
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
tokenizer.add_tokens([AddedToken("<REPR_END>", rstrip=True, lstrip=True)], special_tokens=False)
out1 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
)
self.assertEqual(out1, "<REPR_END>inform")
out2 = tokenizer.decode(
tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
)
# decoding strips the added prefix space.
self.assertEqual(out2, "<REPR_END> inform")
input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
self.assertEqual(input_ids, [256000, 43910])
out2 = tokenizer.decode(
tokenizer.encode(" <REPR_END> inform", add_special_tokens=False), spaces_between_special_tokens=False
)
# TODO @ArthurZ currently we strip left and right, so this will not keep the spaces
self.assertEqual(out2, "<REPR_END>inform")
### Let's make sure decoding does not add extra spaces here and there
# TODO @ArthurZ this should be affected by the lstrip/rstrip/single word /normalize refactoring
# Since currently we always strip left and right of the token, results are as such
input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(input_ids, [204, 25957, 204, 1139])
tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, "<s> Hello<s>how")
# Let's make sure that if there are any spaces, we don't remove them!
input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(input_ids, [235248, 204, 25957, 204, 1368])
tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
self.assertEqual(tokens, ["", "<s>", "▁Hello", "<s>", "▁how"])
decoded_tokens = tokenizer.decode(input_ids)
self.assertEqual(decoded_tokens, " <s> Hello<s> how")
def test_some_edge_cases(self):
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
sp_tokens = tokenizer.sp_model.encode("<s>>", out_type=str)
self.assertEqual(sp_tokens, ["<s>", ">"])
tokens = tokenizer.tokenize("<s>>")
self.assertEqual(sp_tokens, tokens)
self.assertEqual(tokens, ["<s>", ">"])
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))
tokens = tokenizer.tokenize(" ")
self.assertEqual(tokens, [""])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode(" ", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, [""])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("", out_type=str))
tokens = tokenizer.tokenize("")
self.assertEqual(tokens, ["▁▁"])
# a dummy prefix space is not added by the sp_model as it was de-activated
self.assertEqual(tokens, tokenizer.sp_model.encode("▁▁", out_type=str))
@require_jinja
def test_tokenization_for_chat(self):
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
test_chats = [
[{"role": "user", "content": "Hello!"}],
[
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Nice to meet you."},
],
[{"role": "user", "content": "Hello!"}],
]
# Matt: The third test case tests the default system message, but if this is ever changed in the
# class/repo code then that test will fail, and the case will need to be updated.
tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
expected_tokens = [[235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108], [235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108, 235322, 235371, 571, 235298, 2997, 73786, 105776, 108, 7731, 577, 4664, 692, 35606, 235371, 571, 235298, 615, 73786, 108], [235322, 235371, 571, 235298, 2997, 73786, 1645, 108, 4521, 149907, 235371, 571, 235298, 615, 73786, 108]] # fmt: skip
for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
self.assertListEqual(tokenized_chat, expected_tokens)
@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
def test_edge_case_tabulation(self):
fast_tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
slow_tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
input_text = "Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61"
EXPECTED_IDS = [ 2, 6750, 1, 235265, 235248, 255969, 235248, 109, 4747, 139, 235335, 139, 216311, 241316, 139, 239880, 235341, 144, 235269, 235248, 235274, 235284, 235304, 235310, 235248, 235274, 235308, 235248, 235308, 235269, 235318, 235274] # fmt: skip
EXPECTED_TOKENS = [ "Hey", "<eos>", ".", "", "\t\t", "", "\n\n", "you", "▁▁", "é", "▁▁", "@#", "😈", "▁▁", "🤗", "!", "▁▁▁▁▁▁▁", ",", "", "1", "2", "3", "4", "", "1", "5", "", "5", ",", "6", "1"] # fmt: skip
tokens = fast_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
tokens = slow_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
input_ids = fast_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
input_ids = slow_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
text = fast_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61")
text = slow_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>Hey<eos>. \t\t \n\nyou é @#😈 🤗! , 1234 15 5,61")
input_text = "\t\t\t\t \n\n61"
EXPECTED_IDS = [2, 255971, 235248, 109, 235318, 235274]
EXPECTED_TOKENS = ["\t\t\t\t", "", "\n\n", "6", "1"]
tokens = fast_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
tokens = slow_tokenizer.tokenize(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(tokens, EXPECTED_TOKENS)
input_ids = fast_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
input_ids = slow_tokenizer.encode(input_text)
with self.subTest("test fast edge case fast"):
self.assertEqual(input_ids, EXPECTED_IDS)
text = fast_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>\t\t\t\t \n\n61")
text = slow_tokenizer.decode(EXPECTED_IDS)
with self.subTest("test fast edge case fast"):
self.assertEqual(text, "<bos>\t\t\t\t \n\n61")