403 lines
15 KiB
Python
403 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Fuyu model."""
|
|
|
|
import io
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import FuyuConfig, is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
if is_torch_available() and is_vision_available():
|
|
from transformers import FuyuProcessor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import FuyuForCausalLM
|
|
|
|
|
|
class FuyuModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
image_size=30,
|
|
patch_size=15,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels
|
|
|
|
def get_config(self):
|
|
return FuyuConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
):
|
|
model = FuyuForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
model = FuyuForCausalLM(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
)
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
)
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_causal_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
model = FuyuForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.is_decoder = True
|
|
config.add_cross_attention = True
|
|
model = FuyuForCausalLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# first forward pass
|
|
outputs = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
use_cache=True,
|
|
)
|
|
past_key_values = outputs.past_key_values
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
|
|
|
output_from_no_past = model(
|
|
next_input_ids,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
output_from_past = model(
|
|
next_tokens,
|
|
attention_mask=next_attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
past_key_values=past_key_values,
|
|
output_hidden_states=True,
|
|
)["hidden_states"][0]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class FuyuModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (FuyuForCausalLM,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"text-generation": FuyuForCausalLM} if is_torch_available() else {}
|
|
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_cpu_offload = False
|
|
test_disk_offload = False
|
|
test_model_parallel = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = FuyuModelTester(self)
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model.")
|
|
def test_disk_offload_bin(self):
|
|
super().test_disk_offload()
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model.")
|
|
def test_disk_offload_safetensors(self):
|
|
super().test_disk_offload()
|
|
|
|
# TODO: Fix me (once this model gets more usage)
|
|
@unittest.skip("Does not work on the tiny model.")
|
|
def test_model_parallelism(self):
|
|
super().test_model_parallelism()
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class FuyuModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_processor(self):
|
|
return FuyuProcessor.from_pretrained("adept/fuyu-8b")
|
|
|
|
@cached_property
|
|
def default_model(self):
|
|
return FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
|
|
|
|
def test_greedy_generation(self):
|
|
processor = self.default_processor
|
|
model = self.default_model
|
|
|
|
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
|
|
image = Image.open(io.BytesIO(requests.get(url).content))
|
|
|
|
text_prompt_coco_captioning = "Generate a coco-style caption.\n"
|
|
|
|
inputs = processor(text=text_prompt_coco_captioning, images=image, return_tensors="pt")
|
|
generated_ids = model.generate(**inputs, max_new_tokens=10)
|
|
|
|
# take the last 8 tokens (in order to skip special \n\x04 characters) and decode them
|
|
generated_text = processor.batch_decode(generated_ids[:, -8:], skip_special_tokens=True)[0]
|
|
self.assertEqual(generated_text, "A blue bus parked on the side of a road.")
|
|
|
|
|
|
"""
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_model_8b_chat_greedy_generation_bus_color(self):
|
|
EXPECTED_TEXT_COMPLETION = "The bus is blue.\n|ENDOFTEXT|"
|
|
text_prompt_bus_color = "What color is the bus?\n"
|
|
model_inputs_bus_color = self.processor(text=text_prompt_bus_color, images=self.bus_image_pil)
|
|
|
|
generated_tokens = self.model.generate(**model_inputs_bus_color, max_new_tokens=10)
|
|
text = self.processor.tokenizer.batch_decode(generated_tokens)
|
|
end_sequence = text[0].split("\x04")[1]
|
|
clean_sequence = (
|
|
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
|
|
if "|ENDOFTEXT|" in end_sequence
|
|
else end_sequence
|
|
)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_model_8b_chat_greedy_generation_chart_vqa(self):
|
|
EXPECTED_TEXT_TOKENS = ["The","life expectancy","at","birth","of male","s in","","20","18","is","","80",".","7",".","\n","|ENDOFTEXT|",] # fmt: skip
|
|
expected_text_completion = " ".join(EXPECTED_TEXT_TOKENS) # TODO make sure the end string matches
|
|
|
|
text_prompt_chart_vqa = "What is the highest life expectancy at birth of male?\n"
|
|
|
|
chart_image_url = (
|
|
"https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/chart.png"
|
|
)
|
|
chart_image_pil = Image.open(io.BytesIO(requests.get(chart_image_url).content))
|
|
|
|
model_inputs_chart_vqa = self.processor(text=text_prompt_chart_vqa, images=chart_image_pil)
|
|
generated_tokens = self.model.generate(**model_inputs_chart_vqa, max_new_tokens=10)
|
|
text = self.processor.tokenizer.batch_decode(generated_tokens)
|
|
end_sequence = text[0].split("\x04")[1]
|
|
clean_sequence = (
|
|
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
|
|
if "|ENDOFTEXT|" in end_sequence
|
|
else end_sequence
|
|
)
|
|
self.assertEqual(expected_text_completion, clean_sequence)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
def test_model_8b_chat_greedy_generation_bounding_box(self):
|
|
EXPECTED_TEXT_COMPLETION = "\x00194213202244\x01|ENDOFTEXT|"
|
|
text_prompt_bbox = "When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\\nWilliams" # noqa: E231
|
|
|
|
bbox_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bbox_sample_image.png"
|
|
bbox_image_pil = Image.open(io.BytesIO(requests.get(bbox_image_url).content))
|
|
|
|
model_inputs_bbox = self.processor(text=text_prompt_bbox, images=bbox_image_pil)
|
|
generated_tokens = self.model.generate(**model_inputs_bbox, max_new_tokens=10)
|
|
text = self.processor.tokenizer.batch_decode(generated_tokens)
|
|
end_sequence = text[0].split("\x04")[1]
|
|
clean_sequence = (
|
|
end_sequence[: end_sequence.find("|ENDOFTEXT|") + len("|ENDOFTEXT|")]
|
|
if "|ENDOFTEXT|" in end_sequence
|
|
else end_sequence
|
|
)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, clean_sequence)
|
|
"""
|