170 lines
6.3 KiB
Python
170 lines
6.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer
|
|
from transformers.testing_utils import slow
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
# using a different tiny model than the one used for default params defined in init to ensure proper testing
|
|
FSMT_TINY2 = "stas/tiny-wmt19-en-ru"
|
|
|
|
|
|
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "stas/tiny-wmt19-en-de"
|
|
tokenizer_class = FSMTTokenizer
|
|
test_rust_tokenizer = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"w</w>",
|
|
"r</w>",
|
|
"t</w>",
|
|
"lo",
|
|
"low",
|
|
"er</w>",
|
|
"low</w>",
|
|
"lowest</w>",
|
|
"newer</w>",
|
|
"wider</w>",
|
|
"<unk>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
|
|
|
|
self.langs = ["en", "ru"]
|
|
config = {
|
|
"langs": self.langs,
|
|
"src_vocab_size": 10,
|
|
"tgt_vocab_size": 20,
|
|
}
|
|
|
|
self.src_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["src_vocab_file"])
|
|
self.tgt_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["tgt_vocab_file"])
|
|
config_file = os.path.join(self.tmpdirname, "tokenizer_config.json")
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.src_vocab_file, "w") as fp:
|
|
fp.write(json.dumps(vocab_tokens))
|
|
with open(self.tgt_vocab_file, "w") as fp:
|
|
fp.write(json.dumps(vocab_tokens))
|
|
with open(self.merges_file, "w") as fp:
|
|
fp.write("\n".join(merges))
|
|
with open(config_file, "w") as fp:
|
|
fp.write(json.dumps(config))
|
|
|
|
@cached_property
|
|
def tokenizer_ru_en(self):
|
|
return FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en")
|
|
|
|
@cached_property
|
|
def tokenizer_en_ru(self):
|
|
return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")
|
|
|
|
def test_online_tokenizer_config(self):
|
|
"""this just tests that the online tokenizer files get correctly fetched and
|
|
loaded via its tokenizer_config.json and it's not slow so it's run by normal CI
|
|
"""
|
|
tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2)
|
|
self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"])
|
|
self.assertEqual(tokenizer.src_vocab_size, 21)
|
|
self.assertEqual(tokenizer.tgt_vocab_size, 21)
|
|
|
|
def test_full_tokenizer(self):
|
|
"""Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt"""
|
|
tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)
|
|
|
|
text = "lower"
|
|
bpe_tokens = ["low", "er</w>"]
|
|
tokens = tokenizer.tokenize(text)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + ["<unk>"]
|
|
input_bpe_tokens = [14, 15, 20]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = self.tokenizer_ru_en
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == text + [2]
|
|
assert encoded_pair == text + [2] + text_2 + [2]
|
|
|
|
@slow
|
|
def test_match_encode_decode(self):
|
|
tokenizer_enc = self.tokenizer_en_ru
|
|
tokenizer_dec = self.tokenizer_ru_en
|
|
|
|
targets = [
|
|
[
|
|
"Here's a little song I wrote. Don't worry, be happy.",
|
|
[2470, 39, 11, 2349, 7222, 70, 5979, 7, 8450, 1050, 13160, 5, 26, 6445, 7, 2],
|
|
],
|
|
["This is it. No more. I'm done!", [132, 21, 37, 7, 1434, 86, 7, 70, 6476, 1305, 427, 2]],
|
|
]
|
|
|
|
# if data needs to be recreated or added, run:
|
|
# import torch
|
|
# model = torch.hub.load("pytorch/fairseq", "transformer.wmt19.en-ru", checkpoint_file="model4.pt", tokenizer="moses", bpe="fastbpe")
|
|
# for src_text, _ in targets: print(f"""[\n"{src_text}",\n {model.encode(src_text).tolist()}\n],""")
|
|
|
|
for src_text, tgt_input_ids in targets:
|
|
encoded_ids = tokenizer_enc.encode(src_text, return_tensors=None)
|
|
self.assertListEqual(encoded_ids, tgt_input_ids)
|
|
|
|
# and decode backward, using the reversed languages model
|
|
decoded_text = tokenizer_dec.decode(encoded_ids, skip_special_tokens=True)
|
|
self.assertEqual(decoded_text, src_text)
|
|
|
|
@slow
|
|
def test_tokenizer_lower(self):
|
|
tokenizer = FSMTTokenizer.from_pretrained("facebook/wmt19-ru-en", do_lower_case=True)
|
|
tokens = tokenizer.tokenize("USA is United States of America")
|
|
expected = ["us", "a</w>", "is</w>", "un", "i", "ted</w>", "st", "ates</w>", "of</w>", "am", "er", "ica</w>"]
|
|
self.assertListEqual(tokens, expected)
|
|
|
|
@unittest.skip("FSMTConfig.__init__ requires non-optional args")
|
|
def test_torch_encode_plus_sent_to_model(self):
|
|
pass
|
|
|
|
@unittest.skip("FSMTConfig.__init__ requires non-optional args")
|
|
def test_np_encode_plus_sent_to_model(self):
|
|
pass
|