89 lines
3.6 KiB
Python
89 lines
3.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 Huggingface
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from transformers import (
|
|
DPRContextEncoderTokenizer,
|
|
DPRContextEncoderTokenizerFast,
|
|
DPRQuestionEncoderTokenizer,
|
|
DPRQuestionEncoderTokenizerFast,
|
|
DPRReaderOutput,
|
|
DPRReaderTokenizer,
|
|
DPRReaderTokenizerFast,
|
|
)
|
|
from transformers.testing_utils import require_tokenizers, slow
|
|
from transformers.tokenization_utils_base import BatchEncoding
|
|
|
|
from ..bert.test_tokenization_bert import BertTokenizationTest
|
|
|
|
|
|
@require_tokenizers
|
|
class DPRContextEncoderTokenizationTest(BertTokenizationTest):
|
|
tokenizer_class = DPRContextEncoderTokenizer
|
|
rust_tokenizer_class = DPRContextEncoderTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_id = "facebook/dpr-ctx_encoder-single-nq-base"
|
|
|
|
|
|
@require_tokenizers
|
|
class DPRQuestionEncoderTokenizationTest(BertTokenizationTest):
|
|
tokenizer_class = DPRQuestionEncoderTokenizer
|
|
rust_tokenizer_class = DPRQuestionEncoderTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_id = "facebook/dpr-ctx_encoder-single-nq-base"
|
|
|
|
|
|
@require_tokenizers
|
|
class DPRReaderTokenizationTest(BertTokenizationTest):
|
|
tokenizer_class = DPRReaderTokenizer
|
|
rust_tokenizer_class = DPRReaderTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_id = "facebook/dpr-ctx_encoder-single-nq-base"
|
|
|
|
@slow
|
|
def test_decode_best_spans(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
|
|
text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False)
|
|
input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3]
|
|
reader_input = BatchEncoding({"input_ids": input_ids})
|
|
|
|
start_logits = [[0] * len(input_ids[0])]
|
|
end_logits = [[0] * len(input_ids[0])]
|
|
relevance_logits = [0]
|
|
reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits)
|
|
|
|
start_index, end_index = 8, 9
|
|
start_logits[0][start_index] = 10
|
|
end_logits[0][end_index] = 10
|
|
predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output)
|
|
self.assertEqual(predicted_spans[0].start_index, start_index)
|
|
self.assertEqual(predicted_spans[0].end_index, end_index)
|
|
self.assertEqual(predicted_spans[0].doc_id, 0)
|
|
|
|
@slow
|
|
def test_call(self):
|
|
tokenizer = self.tokenizer_class.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
text_1 = tokenizer.encode("question sequence", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("title sequence", add_special_tokens=False)
|
|
text_3 = tokenizer.encode("text sequence", add_special_tokens=False)
|
|
expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3
|
|
encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"])
|
|
self.assertIn("input_ids", encoded_input)
|
|
self.assertIn("attention_mask", encoded_input)
|
|
self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids)
|