62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import AutoModelForImageClassification
|
|
|
|
if is_vision_available():
|
|
from transformers import AutoImageProcessor
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class DiTIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_for_image_classification(self):
|
|
image_processor = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip")
|
|
model = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip")
|
|
model.to(torch_device)
|
|
|
|
from datasets import load_dataset
|
|
|
|
dataset = load_dataset("nielsr/rvlcdip-demo")
|
|
|
|
image = dataset["train"][0]["image"].convert("RGB")
|
|
|
|
inputs = image_processor(image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
|
|
expected_shape = torch.Size((1, 16))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[-0.4158, -0.4092, -0.4347],
|
|
device=torch_device,
|
|
dtype=torch.float,
|
|
)
|
|
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
|