transformers/tests/models/dinov2/test_modeling_dinov2.py

338 lines
12 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Dinov2 model."""
import unittest
from transformers import Dinov2Config
from transformers.testing_utils import (
is_flaky,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import Dinov2Backbone, Dinov2ForImageClassification, Dinov2Model
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class Dinov2ModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
# in Dinov2, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values, labels):
model = Dinov2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_backbone(self, config, pixel_values, labels):
model = Dinov2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
expected_size = self.image_size // config.patch_size
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size]
)
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
# verify backbone works with out_features=None
config.out_features = None
model = Dinov2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size]
)
# verify channels
self.parent.assertEqual(len(model.channels), 1)
# verify backbone works with apply_layernorm=False and reshape_hidden_states=False
config.apply_layernorm = False
config.reshape_hidden_states = False
model = Dinov2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = Dinov2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = Dinov2ForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Dinov2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Dinov2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
Dinov2Model,
Dinov2ForImageClassification,
Dinov2Backbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"image-feature-extraction": Dinov2Model, "image-classification": Dinov2ForImageClassification}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Dinov2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Dinov2Config, has_text_modality=False, hidden_size=37)
@is_flaky(max_attempts=3, description="`torch.nn.init.trunc_normal_` is flaky.")
def test_initialization(self):
super().test_initialization()
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Dinov2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip(reason="Dinov2 does not support feedforward chunking yet")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/dinov2-base"
model = Dinov2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class Dinov2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("facebook/dinov2-base") if is_vision_available() else None
@slow
def test_inference_no_head(self):
model = Dinov2Model.from_pretrained("facebook/dinov2-base").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the last hidden states
expected_shape = torch.Size((1, 257, 768))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-2.1747, -0.4729, 1.0936], [-3.2780, -0.8269, -0.9210], [-2.9129, 1.1284, -0.7306]],
device=torch_device,
)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
@require_torch
class Dinov2BackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (Dinov2Backbone,) if is_torch_available() else ()
config_class = Dinov2Config
has_attentions = False
def setUp(self):
self.model_tester = Dinov2ModelTester(self)