transformers/tests/models/detr/test_modeling_detr.py

682 lines
28 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch DETR model."""
import inspect
import math
import unittest
from transformers import DetrConfig, ResNetConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DetrForObjectDetection, DetrForSegmentation, DetrModel
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class DetrModelTester:
def __init__(
self,
parent,
batch_size=8,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=8,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=12,
num_channels=3,
min_size=200,
max_size=200,
n_targets=8,
num_labels=91,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.min_size = min_size
self.max_size = max_size
self.n_targets = n_targets
self.num_labels = num_labels
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32)
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size])
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device)
labels.append(target)
config = self.get_config()
return config, pixel_values, pixel_mask, labels
def get_config(self):
resnet_config = ResNetConfig(
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
hidden_act="relu",
num_labels=3,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
)
return DetrConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
use_timm_backbone=False,
backbone_config=resnet_config,
backbone=None,
use_pretrained_backbone=False,
)
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def create_and_check_detr_model(self, config, pixel_values, pixel_mask, labels):
model = DetrModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size)
)
def create_and_check_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
model = DetrForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_torch
class DetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
DetrModel,
DetrForObjectDetection,
DetrForSegmentation,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": DetrModel,
"image-segmentation": DetrForSegmentation,
"object-detection": DetrForObjectDetection,
}
if is_torch_available()
else {}
)
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
zero_init_hidden_state = True
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ in ["DetrForObjectDetection", "DetrForSegmentation"]:
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.min_size,
self.model_tester.max_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = DetrModelTester(self)
self.config_tester = ConfigTester(self, config_class=DetrConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_detr_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_model(*config_and_inputs)
def test_detr_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_object_detection_head_model(*config_and_inputs)
# TODO: check if this works again for PyTorch 2.x.y
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="DETR does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="DETR does not use inputs_embeds")
def test_inputs_embeds_matches_input_ids(self):
pass
@unittest.skip(reason="DETR does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DETR is not a generative model")
def test_generate_without_input_ids(self):
pass
@unittest.skip(reason="DETR does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
@slow
def test_model_outputs_equivalence(self):
# TODO Niels: fix me!
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
decoder_seq_length = self.model_tester.decoder_seq_length
encoder_seq_length = self.model_tester.encoder_seq_length
decoder_key_length = self.model_tester.decoder_seq_length
encoder_key_length = self.model_tester.encoder_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "DetrForObjectDetection":
correct_outlen += 2
# Panoptic Segmentation model returns pred_logits, pred_boxes, pred_masks
if model_class.__name__ == "DetrForSegmentation":
correct_outlen += 3
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_auxiliary_loss(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.auxiliary_loss = True
# only test for object detection and segmentation model
for model_class in self.all_model_classes[1:]:
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
outputs = model(**inputs)
self.assertIsNotNone(outputs.auxiliary_outputs)
self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = ["pixel_values", "pixel_mask"]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" in arg_names
else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["pixel_values", "pixel_mask"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_different_timm_backbone(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# let's pick a random timm backbone
config.backbone = "tf_mobilenetv3_small_075"
config.backbone_config = None
config.use_timm_backbone = True
config.backbone_kwargs = {"out_indices": [2, 3, 4]}
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "DetrForObjectDetection":
expected_shape = (
self.model_tester.batch_size,
self.model_tester.num_queries,
self.model_tester.num_labels + 1,
)
self.assertEqual(outputs.logits.shape, expected_shape)
# Confirm out_indices was propogated to backbone
self.assertEqual(len(model.model.backbone.conv_encoder.intermediate_channel_sizes), 3)
elif model_class.__name__ == "DetrForSegmentation":
# Confirm out_indices was propogated to backbone
self.assertEqual(len(model.detr.model.backbone.conv_encoder.intermediate_channel_sizes), 3)
else:
# Confirm out_indices was propogated to backbone
self.assertEqual(len(model.backbone.conv_encoder.intermediate_channel_sizes), 3)
self.assertTrue(outputs)
def test_greyscale_images(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# use greyscale pixel values
inputs_dict["pixel_values"] = floats_tensor(
[self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size]
)
# let's set num_channels to 1
config.num_channels = 1
config.backbone_config.num_channels = 1
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertTrue(outputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.init_xavier_std = 1e9
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "bbox_attention" in name and "bias" not in name:
self.assertLess(
100000,
abs(param.data.max().item()),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
TOLERANCE = 1e-4
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_timm
@require_vision
@slow
class DetrModelIntegrationTestsTimmBackbone(unittest.TestCase):
@cached_property
def default_image_processor(self):
return DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") if is_vision_available() else None
def test_inference_no_head(self):
model = DetrModel.from_pretrained("facebook/detr-resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 100, 256))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_object_detection_head(self):
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
# verify outputs
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-19.1194, -0.0893, -11.0154], [-17.3640, -1.8035, -14.0219], [-20.0461, -0.5837, -11.1060]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.4433, 0.5302, 0.8853], [0.5494, 0.2517, 0.0529], [0.4998, 0.5360, 0.9956]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
# verify postprocessing
results = image_processor.post_process_object_detection(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_scores = torch.tensor([0.9982, 0.9960, 0.9955, 0.9988, 0.9987]).to(torch_device)
expected_labels = [75, 75, 63, 17, 17]
expected_slice_boxes = torch.tensor([40.1633, 70.8115, 175.5471, 117.9841]).to(torch_device)
self.assertEqual(len(results["scores"]), 5)
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4))
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes))
def test_inference_panoptic_segmentation_head(self):
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
# verify outputs
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-18.1565, -1.7568, -13.5029], [-16.8888, -1.4138, -14.1028], [-17.5709, -2.5080, -11.8654]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.5344, 0.1789, 0.9285], [0.4420, 0.0572, 0.0875], [0.6630, 0.6887, 0.1017]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
expected_shape_masks = torch.Size((1, model.config.num_queries, 200, 267))
self.assertEqual(outputs.pred_masks.shape, expected_shape_masks)
expected_slice_masks = torch.tensor(
[[-7.7558, -10.8788, -11.9797], [-11.8881, -16.4329, -17.7451], [-14.7316, -19.7383, -20.3004]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_masks[0, 0, :3, :3], expected_slice_masks, atol=1e-3))
# verify postprocessing
results = image_processor.post_process_panoptic_segmentation(
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
)[0]
expected_shape = torch.Size([480, 640])
expected_slice_segmentation = torch.tensor([[4, 4, 4], [4, 4, 4], [4, 4, 4]], dtype=torch.int32).to(
torch_device
)
expected_number_of_segments = 5
expected_first_segment = {"id": 1, "label_id": 17, "was_fused": False, "score": 0.994097}
number_of_unique_segments = len(torch.unique(results["segmentation"]))
self.assertTrue(
number_of_unique_segments, expected_number_of_segments + 1
) # we add 1 for the background class
self.assertTrue(results["segmentation"].shape, expected_shape)
self.assertTrue(torch.allclose(results["segmentation"][:3, :3], expected_slice_segmentation, atol=1e-4))
self.assertTrue(len(results["segments_info"]), expected_number_of_segments)
self.assertDictEqual(results["segments_info"][0], expected_first_segment)
@require_vision
@require_torch
@slow
class DetrModelIntegrationTests(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
if is_vision_available()
else None
)
def test_inference_no_head(self):
model = DetrModel.from_pretrained("facebook/detr-resnet-50", revision="no_timm").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 100, 256))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))