transformers/tests/models/dbrx/test_modeling_dbrx.py

394 lines
15 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch DBRX model."""
import unittest
from transformers import DbrxConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DbrxForCausalLM, DbrxModel
class DbrxModelTester:
def __init__(
self,
parent,
hidden_size=32,
ffn_hidden_size=32,
num_attention_heads=4,
kv_n_heads=4,
num_hidden_layers=5,
max_position_embeddings=512,
type_vocab_size=16,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
use_cache=True,
type_sequence_label_size=2,
num_labels=3,
num_choices=4,
scope=None,
clip_qkv=8,
rope_theta=500000,
attn_config_model_type="",
emb_pdrop=0.0,
moe_jitter_eps=0,
moe_loss_weight=0.05,
moe_num_experts=16,
moe_top_k=4,
ffn_config_model_type="",
ffn_act_fn_name="gelu",
initializer_range=0.02,
output_router_logits=False,
resid_pdrop=0.0,
tie_word_embeddings=False,
torch_dtype="bfloat16",
vocab_size=99,
is_decoder=True,
pad_token_id=0,
):
# Parameters unique to testing
self.batch_size = batch_size
self.seq_length = seq_length
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.parent = parent
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
# attn_config params
self.clip_qkv = clip_qkv
self.kv_n_heads = kv_n_heads
self.rope_theta = rope_theta
self.attn_config_model_type = attn_config_model_type
# ffn_config params
self.ffn_hidden_size = ffn_hidden_size
self.moe_jitter_eps = moe_jitter_eps
self.moe_loss_weight = moe_loss_weight
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.ffn_config_model_type = ffn_config_model_type
self.ffn_act_fn_name = ffn_act_fn_name
# Other model params
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.vocab_size = vocab_size
self.use_cache = use_cache
self.initializer_range = initializer_range
self.emb_pdrop = emb_pdrop
self.output_router_logits = output_router_logits
self.resid_pdrop = resid_pdrop
self.tie_word_embeddings = tie_word_embeddings
self.torch_dtype = torch_dtype
self.is_decoder = is_decoder
self.pad_token_id = pad_token_id
# Make the dictionaries
self.ffn_config = {
"ffn_hidden_size": self.ffn_hidden_size,
"moe_jitter_eps": self.moe_jitter_eps,
"moe_loss_weight": self.moe_loss_weight,
"moe_num_experts": self.moe_num_experts,
"moe_top_k": self.moe_top_k,
"model_type": self.ffn_config_model_type,
"ffn_act_fn": {"name": self.ffn_act_fn_name},
}
self.attn_config = {
"clip_qkv": self.clip_qkv,
"kv_n_heads": self.kv_n_heads,
"model_type": self.attn_config_model_type,
"rope_theta": self.rope_theta,
}
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
# Behind the scenes, `DbrxConfig` maps the parameters `hidden_size`, `num_hidden_layers`,
# `num_attention_heads`, `max_position_embeddings` to the parameters `d_model`, `n_layers`,
# `n_heads`, `max_seq_len` respectively. We use the first group of parameters because
# other tests expect every model to have these parameters with these specific names.
config = DbrxConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size, # mapped to `d_model`
num_hidden_layers=self.num_hidden_layers, # mapped to `n_layers`
num_attention_heads=self.num_attention_heads, # mapped to `n_heads`
max_position_embeddings=self.max_position_embeddings, # mapped to `max_seq_len`
attn_config=self.attn_config,
ffn_config=self.ffn_config,
resid_pdrop=self.resid_pdrop,
emb_pdrop=self.emb_pdrop,
use_cache=self.use_cache,
initializer_range=self.initializer_range,
output_router_logits=self.output_router_logits,
is_decoder=self.is_decoder,
pad_token_id=self.pad_token_id,
)
return config
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Dbrx
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = DbrxModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Dbrx
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = DbrxModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Dbrx
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = DbrxForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = DbrxForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Dbrx
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class DbrxModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DbrxModel, DbrxForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (DbrxForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = {"text-generation": DbrxForCausalLM} if is_torch_available() else {}
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = DbrxModelTester(self)
self.config_tester = ConfigTester(self, config_class=DbrxConfig, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "eitanturok/dbrx-tiny"
model = DbrxModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip("Dbrx models have weight tying disabled.")
def test_tied_weights_keys(self):
pass
# Offload does not work with Dbrx models because of the forward of DbrxExperts where we chunk the experts.
# The issue is that the offloaded weights of the mlp layer are still on meta device (w1_chunked, v1_chunked, w2_chunked)
@unittest.skip("Dbrx models do not work with offload")
def test_cpu_offload(self):
pass
@unittest.skip("Dbrx models do not work with offload")
def test_disk_offload_safetensors(self):
pass
@unittest.skip("Dbrx models do not work with offload")
def test_disk_offload_bin(self):
pass
@require_torch
class DbrxModelIntegrationTest(unittest.TestCase):
@slow
def test_tiny_model_logits(self):
model = DbrxForCausalLM.from_pretrained("Rocketknight1/dbrx-tiny-random")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
vocab_size = model.vocab_size
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[
[
[-1.6300e-04, 5.0118e-04, 2.5437e-04],
[2.0422e-05, 2.7210e-04, -1.5125e-04],
[-1.5105e-04, 4.6879e-04, 3.3309e-04],
]
]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))