238 lines
9.5 KiB
Python
238 lines
9.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch CPMAnt model."""
|
|
|
|
import unittest
|
|
|
|
from transformers.testing_utils import is_torch_available, require_torch, tooslow
|
|
|
|
from ...generation.test_utils import torch_device
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
CpmAntConfig,
|
|
CpmAntForCausalLM,
|
|
CpmAntModel,
|
|
CpmAntTokenizer,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class CpmAntModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
seq_length=8,
|
|
is_training=True,
|
|
use_token_type_ids=False,
|
|
use_input_mask=False,
|
|
use_labels=False,
|
|
use_mc_token_ids=False,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
num_buckets=32,
|
|
max_distance=128,
|
|
prompt_length=8,
|
|
prompt_types=8,
|
|
segment_types=8,
|
|
init_std=0.02,
|
|
return_dict=True,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.use_mc_token_ids = use_mc_token_ids
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.num_buckets = num_buckets
|
|
self.max_distance = max_distance
|
|
self.prompt_length = prompt_length
|
|
self.prompt_types = prompt_types
|
|
self.segment_types = segment_types
|
|
self.init_std = init_std
|
|
self.return_dict = return_dict
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = {}
|
|
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32)
|
|
input_ids["use_cache"] = False
|
|
|
|
config = self.get_config()
|
|
|
|
return (config, input_ids)
|
|
|
|
def get_config(self):
|
|
return CpmAntConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
dim_ff=self.intermediate_size,
|
|
position_bias_num_buckets=self.num_buckets,
|
|
position_bias_max_distance=self.max_distance,
|
|
prompt_types=self.prompt_types,
|
|
prompt_length=self.prompt_length,
|
|
segment_types=self.segment_types,
|
|
use_cache=True,
|
|
init_std=self.init_std,
|
|
return_dict=self.return_dict,
|
|
)
|
|
|
|
def create_and_check_cpmant_model(self, config, input_ids, *args):
|
|
model = CpmAntModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
hidden_states = model(**input_ids).last_hidden_state
|
|
|
|
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size))
|
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, *args):
|
|
model = CpmAntForCausalLM(config)
|
|
model.to(torch_device)
|
|
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device)
|
|
model.eval()
|
|
|
|
model_output = model(**input_ids)
|
|
self.parent.assertEqual(
|
|
model_output.logits.shape,
|
|
(self.batch_size, self.seq_length, config.vocab_size + config.prompt_types * config.prompt_length),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class CpmAntModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (CpmAntModel, CpmAntForCausalLM) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": CpmAntModel, "text-generation": CpmAntForCausalLM} if is_torch_available() else {}
|
|
)
|
|
|
|
test_pruning = False
|
|
test_missing_keys = False
|
|
test_mismatched_shapes = False
|
|
test_head_masking = False
|
|
test_resize_embeddings = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = CpmAntModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=CpmAntConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_common_properties()
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
def test_inputs_embeds(self):
|
|
unittest.skip("CPMAnt doesn't support input_embeds.")(self.test_inputs_embeds)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
unittest.skip(
|
|
"CPMAnt doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\
|
|
So is attentions. We strongly recommand you use loss to tune model."
|
|
)(self.test_retain_grad_hidden_states_attentions)
|
|
|
|
def test_cpmant_model(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_cpmant_model(config, inputs)
|
|
|
|
def test_cpmant_lm_head_model(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_lm_head_model(config, inputs)
|
|
|
|
|
|
@require_torch
|
|
class CpmAntModelIntegrationTest(unittest.TestCase):
|
|
@tooslow
|
|
def test_inference_masked_lm(self):
|
|
texts = "今天天气真好!"
|
|
model_path = "openbmb/cpm-ant-10b"
|
|
model = CpmAntModel.from_pretrained(model_path)
|
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path)
|
|
inputs = tokenizer(texts, return_tensors="pt")
|
|
hidden_states = model(**inputs).last_hidden_state
|
|
|
|
expected_slice = torch.tensor(
|
|
[[[6.1708, 5.9244, 1.0835], [6.5207, 6.2893, -11.3324], [-1.0107, -0.0576, -5.9577]]],
|
|
)
|
|
self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2))
|
|
|
|
|
|
@require_torch
|
|
class CpmAntForCausalLMlIntegrationTest(unittest.TestCase):
|
|
@tooslow
|
|
def test_inference_casual(self):
|
|
texts = "今天天气真好!"
|
|
model_path = "openbmb/cpm-ant-10b"
|
|
model = CpmAntForCausalLM.from_pretrained(model_path)
|
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path)
|
|
inputs = tokenizer(texts, return_tensors="pt")
|
|
hidden_states = model(**inputs).logits
|
|
|
|
expected_slice = torch.tensor(
|
|
[[[-6.4267, -6.4083, -6.3958], [-5.8802, -5.9447, -5.7811], [-5.3896, -5.4820, -5.4295]]],
|
|
)
|
|
self.assertTrue(torch.allclose(hidden_states[:, :3, :3], expected_slice, atol=1e-2))
|
|
|
|
@tooslow
|
|
def test_simple_generation(self):
|
|
model_path = "openbmb/cpm-ant-10b"
|
|
model = CpmAntForCausalLM.from_pretrained(model_path)
|
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path)
|
|
texts = "今天天气不错,"
|
|
expected_output = "今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的"
|
|
model_inputs = tokenizer(texts, return_tensors="pt")
|
|
token_ids = model.generate(**model_inputs)
|
|
output_texts = tokenizer.batch_decode(token_ids)
|
|
self.assertEqual(expected_output, output_texts)
|
|
|
|
@tooslow
|
|
def test_batch_generation(self):
|
|
model_path = "openbmb/cpm-ant-10b"
|
|
model = CpmAntForCausalLM.from_pretrained(model_path)
|
|
tokenizer = CpmAntTokenizer.from_pretrained(model_path)
|
|
texts = ["今天天气不错,", "新年快乐,万事如意!"]
|
|
expected_output = [
|
|
"今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的",
|
|
"新年快乐,万事如意!在这辞旧迎新的美好时刻,我谨代表《农村新技术》杂志社全体同仁,向一直以来关心、支持《农村新技术》杂志发展的各级领导、各界朋友和广大读者致以最诚挚的",
|
|
]
|
|
model_inputs = tokenizer(texts, return_tensors="pt", padding=True)
|
|
token_ids = model.generate(**model_inputs)
|
|
output_texts = tokenizer.batch_decode(token_ids)
|
|
self.assertEqual(expected_output, output_texts)
|