314 lines
19 KiB
Python
314 lines
19 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
from typing import List
|
|
|
|
from transformers import ClvpTokenizer
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin, slow
|
|
|
|
|
|
class ClvpTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "susnato/clvp_dev"
|
|
tokenizer_class = ClvpTokenizer
|
|
test_rust_tokenizer = False
|
|
from_pretrained_kwargs = {"add_prefix_space": True}
|
|
test_seq2seq = False
|
|
test_sentencepiece_ignore_case = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
"<|endoftext|>",
|
|
"[SPACE]",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, "vocab.json")
|
|
self.merges_file = os.path.join(self.tmpdirname, "merges.txt")
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.get_tokenizer with GPT2->Clvp
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return ClvpTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.get_input_output_texts
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
# Copied from transformers.tests.models.layoutxlm.test_tokenization_layoutxlm.LayoutXLMTokenizationTest.test_add_special_tokens
|
|
def test_add_special_tokens(self):
|
|
tokenizers: List[ClvpTokenizer] = self.get_tokenizers(do_lower_case=False)
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
special_token = "[SPECIAL_TOKEN]"
|
|
special_token_box = [1000, 1000, 1000, 1000]
|
|
|
|
tokenizer.add_special_tokens({"cls_token": special_token})
|
|
encoded_special_token = tokenizer.encode(
|
|
[special_token], boxes=[special_token_box], add_special_tokens=False
|
|
)
|
|
self.assertEqual(len(encoded_special_token), 1)
|
|
|
|
decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
|
|
self.assertTrue(special_token not in decoded)
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.test_rust_and_python_full_tokenizers
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
|
|
sequence = "lower newer"
|
|
|
|
# Testing tokenization
|
|
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
# Testing conversion to ids without special tokens
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing conversion to ids with special tokens
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
ids = tokenizer.encode(sequence, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing the unknown token
|
|
input_tokens = tokens + [rust_tokenizer.unk_token]
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.test_padding
|
|
def test_padding(self, max_length=15):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
]
|
|
|
|
# Simple input tests
|
|
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
s2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
p2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.test_padding_if_pad_token_set_slow
|
|
def test_padding_if_pad_token_set_slow(self):
|
|
tokenizer = ClvpTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input looooooooong", "This is a simple input"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input loooooong", "This is a simple input"),
|
|
("This is a simple pair loooooong", "This is a simple pair"),
|
|
]
|
|
|
|
pad_token_id = tokenizer.pad_token_id
|
|
|
|
out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
|
|
out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
|
|
out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
|
|
out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")
|
|
|
|
# s
|
|
# test single string max_length padding
|
|
self.assertEqual(out_s["input_ids"].shape[-1], 30)
|
|
self.assertTrue(pad_token_id in out_s["input_ids"])
|
|
self.assertTrue(0 in out_s["attention_mask"])
|
|
|
|
# s2
|
|
# test automatic padding
|
|
self.assertEqual(out_s2["input_ids"].shape[-1], 33)
|
|
# long slice doesn't have padding
|
|
self.assertFalse(pad_token_id in out_s2["input_ids"][0])
|
|
self.assertFalse(0 in out_s2["attention_mask"][0])
|
|
# short slice does have padding
|
|
self.assertTrue(pad_token_id in out_s2["input_ids"][1])
|
|
self.assertTrue(0 in out_s2["attention_mask"][1])
|
|
|
|
# p
|
|
# test single pair max_length padding
|
|
self.assertEqual(out_p["input_ids"].shape[-1], 60)
|
|
self.assertTrue(pad_token_id in out_p["input_ids"])
|
|
self.assertTrue(0 in out_p["attention_mask"])
|
|
|
|
# p2
|
|
# test automatic padding pair
|
|
self.assertEqual(out_p2["input_ids"].shape[-1], 52)
|
|
# long slice pair doesn't have padding
|
|
self.assertFalse(pad_token_id in out_p2["input_ids"][0])
|
|
self.assertFalse(0 in out_p2["attention_mask"][0])
|
|
# short slice pair does have padding
|
|
self.assertTrue(pad_token_id in out_p2["input_ids"][1])
|
|
self.assertTrue(0 in out_p2["attention_mask"][1])
|
|
|
|
# Copied from transformers.tests.models.gpt2.test_tokenization_gpt2.GPT2TokenizationTest.test_special_tokens_mask_input_pairs_and_bos_token
|
|
def test_special_tokens_mask_input_pairs_and_bos_token(self):
|
|
# TODO: change to self.get_tokenizers() when the fast version is implemented
|
|
tokenizers = [self.get_tokenizer(do_lower_case=False, add_bos_token=True)]
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence_0 = "Encode this."
|
|
sequence_1 = "This one too please."
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
|
|
encoded_sequence_dict = tokenizer.encode_plus(
|
|
sequence_0,
|
|
sequence_1,
|
|
add_special_tokens=True,
|
|
return_special_tokens_mask=True,
|
|
)
|
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
|
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
|
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
|
|
|
|
filtered_sequence = [
|
|
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
|
|
]
|
|
filtered_sequence = [x for x in filtered_sequence if x is not None]
|
|
self.assertEqual(encoded_sequence, filtered_sequence)
|
|
|
|
def test_token_type_ids(self):
|
|
tokenizer = self.get_tokenizer()
|
|
seq_0 = "Test this method."
|
|
|
|
# We want to have sequence 0 and sequence 1 are tagged
|
|
# respectively with 0 and 1 token_ids
|
|
# (regardless of whether the model use token type ids)
|
|
# We use this assumption in the QA pipeline among other place
|
|
output = tokenizer(seq_0, return_token_type_ids=True, add_special_tokens=True)
|
|
self.assertIn(0, output["token_type_ids"])
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = ClvpTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
|
text = "lower newer"
|
|
bpe_tokens = ["l", "o", "w", "er", "[SPACE]", "n", "e", "w", "er"]
|
|
tokens = tokenizer.tokenize(text, add_prefix_space=False)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [0, 1, 2, 15, 21, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
@slow
|
|
def test_outputs_with_numbers(self):
|
|
text = "hello and this is an example text and I have $1000. my lucky number is 12345."
|
|
tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
|
|
|
|
# fmt: off
|
|
EXPECTED_OUTPUT = [62, 84, 28, 2, 53, 2,147, 2, 54, 2, 43, 2, 169, 122, 29, 64, 2, 136, 37, 33, 2, 53, 2, 22,
|
|
2, 148, 2, 110, 2, 40, 206, 53, 2, 134, 84, 59, 32, 9, 2, 125, 2, 25, 34, 197, 38, 2, 27,
|
|
231, 15, 44, 2, 54, 2, 33, 100, 25, 76, 2, 40, 206, 53, 7, 2, 40, 46, 18, 2, 21, 97, 17,
|
|
219, 2, 87, 210, 8, 19, 22, 76, 9,
|
|
]
|
|
# fmt: on
|
|
|
|
self.assertListEqual(tokenizer.encode(text, add_special_tokens=False), EXPECTED_OUTPUT)
|
|
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
sequences = [
|
|
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
|
|
"general-purpose architectures (BERT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
|
|
"Language Understanding (NLU) and Natural Language Generation (NLG) with over multiple pretrained "
|
|
"models and deep interoperability between Jax, PyTorch and TensorFlow.",
|
|
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
|
|
"conditioning on both left and right context in all layers.",
|
|
"The quick brown fox jumps over the lazy dog.",
|
|
]
|
|
|
|
# fmt: off
|
|
expected_encoding = {'input_ids': [[144, 43, 32, 87, 26, 173, 2, 5, 87, 26, 44, 70, 2, 209, 27, 2, 55, 2, 29, 38, 51, 31, 71, 8, 144, 43, 32, 87, 26, 173, 2, 53, 2, 29, 38, 51, 31, 71, 8, 29, 46, 144, 137, 49, 8, 15, 44, 33, 6, 2, 187, 35, 83, 61, 2, 20, 50, 44, 56, 8, 29, 121, 139, 66, 2, 59, 71, 60, 18, 16, 33, 34, 175, 2, 5, 15, 44, 33, 7, 2, 89, 15, 44, 33, 14, 7, 2, 37, 25, 26, 7, 2, 17, 54, 78, 25, 15, 44, 33, 7, 2, 37, 25, 111, 33, 9, 9, 9, 6, 2, 87, 2, 27, 48, 121, 56, 2, 25, 43, 20, 34, 14, 112, 2, 97, 234, 63, 53, 52, 2, 5, 27, 25, 34, 6, 2, 53, 2, 27, 48, 121, 56, 2, 25, 43, 20, 34, 14, 112, 2, 20, 50, 44, 158, 2, 5, 27, 25, 20, 6, 2, 103, 2, 253, 2, 26, 167, 78, 29, 64, 2, 29, 46, 144, 137, 49, 2, 115, 126, 25, 32, 2, 53, 2, 126, 18, 29, 2, 41, 114, 161, 44, 109, 151, 240, 2, 67, 33, 100, 50, 2, 23, 14, 37, 7, 2, 29, 38, 51, 31, 71, 2, 53, 2, 33, 50, 32, 57, 19, 25, 69, 9], [ 15, 44, 33, 2, 54, 2, 17, 61, 22, 20, 27, 49, 2, 51, 2, 29, 46, 8, 144, 137, 2, 126, 18, 29, 2, 15, 83, 22, 46, 16, 181, 56, 2, 46, 29, 175, 86, 158, 32, 2, 154, 2, 97, 25, 14, 67, 25, 49, 2, 136, 37, 33, 2, 185, 2, 23, 28, 41, 33, 70, 2, 135, 17, 60, 107, 52, 2, 47, 2, 165, 40, 2, 64, 19, 33, 2, 53, 2, 101, 104, 2, 135, 136, 37, 33, 2, 41, 2, 108, 2, 25, 88, 173, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 42, 2, 194, 91, 24, 2, 243, 190, 2, 182, 37, 2, 23, 231, 29, 32, 2, 253, 2, 42, 2, 25, 14, 39, 38, 2, 134, 20, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], # noqa: E501
|
|
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], # noqa: E501
|
|
}
|
|
# fmt: on
|
|
|
|
self.tokenizer_integration_test_util(
|
|
sequences=sequences, expected_encoding=expected_encoding, model_name="susnato/clvp_dev", padding=True
|
|
)
|