transformers/tests/models/clip/test_tokenization_clip.py

185 lines
8.4 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class CLIPTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "openai/clip-vit-base-patch32"
tokenizer_class = CLIPTokenizer
rust_tokenizer_class = CLIPTokenizerFast
test_rust_tokenizer = True
from_pretrained_kwargs = {}
test_seq2seq = False
def setUp(self):
super().setUp()
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = CLIPTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
@require_ftfy
def test_check_encoding_slow_fast(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_s = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
text = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
text_tokenized_s = tokenizer_s.tokenize(text)
text_tokenized_r = tokenizer_r.tokenize(text)
self.assertListEqual(text_tokenized_s, text_tokenized_r)
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
text = "xa\u0303y" + " " + "x\xe3y"
text_tokenized_s = tokenizer_s.tokenize(text)
text_tokenized_r = tokenizer_r.tokenize(text)
self.assertListEqual(text_tokenized_s, text_tokenized_r)
# Test that the tokenization is identical on unicode of space type
spaces_unicodes = [
"\u0009", # (horizontal tab, '\t')
"\u000b", # (vertical tab)
"\u000c", # (form feed)
"\u0020", # (space, ' ')
"\u200e", # (left-to-right mark):w
"\u200f", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
text_tokenized_s = tokenizer_s.tokenize(unicode_seq)
text_tokenized_r = tokenizer_r.tokenize(unicode_seq)
self.assertListEqual(text_tokenized_s, text_tokenized_r)
# Test that the tokenization is identical on unicode of line break type
line_break_unicodes = [
"\u000a", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000d", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000d", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
text_tokenized_s = tokenizer_s.tokenize(unicode_seq)
text_tokenized_r = tokenizer_r.tokenize(unicode_seq)
self.assertListEqual(text_tokenized_s, text_tokenized_r)
def test_offsets_mapping_with_different_add_prefix_space_argument(self):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
text_of_1_token = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
text = f"{text_of_1_token} {text_of_1_token}"
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
use_fast=True,
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (0, len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(len(text_of_1_token) + 1, len(text_of_1_token) + 1 + len(text_of_1_token)),
)
text = f" {text}"
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
use_fast=True,
)
encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
self.assertEqual(
encoding.offset_mapping[1],
(1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
)
def test_log_warning(self):
# Test related to the breaking change introduced in transformers v4.17.0
# We need to check that an error in raised when the user try to load a previous version of the tokenizer.
with self.assertRaises(ValueError) as context:
self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer")
self.assertTrue(
context.exception.args[0].startswith(
"The `backend_tokenizer` provided does not match the expected format."
)
)
@require_ftfy
def test_tokenization_python_rust_equals(self):
super().test_tokenization_python_rust_equals()
# overwrite common test
def test_added_tokens_do_lower_case(self):
# CLIP always lower cases letters
pass