transformers/tests/models/clap/test_modeling_clap.py

766 lines
29 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch CLAP model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import is_torch_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapTextModel,
ClapTextModelWithProjection,
)
class ClapAudioModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=60,
num_mel_bins=16,
window_size=4,
spec_size=64,
patch_size=2,
patch_stride=2,
seq_length=16,
freq_ratio=2,
num_channels=3,
is_training=True,
hidden_size=32,
patch_embeds_hidden_size=16,
projection_dim=32,
depths=[2, 2],
num_hidden_layers=2,
num_heads=[2, 2],
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_mel_bins = num_mel_bins
self.window_size = window_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.depths = depths
self.num_heads = num_heads
self.num_attention_heads = num_heads[0]
self.seq_length = seq_length
self.spec_size = spec_size
self.freq_ratio = freq_ratio
self.patch_stride = patch_stride
self.patch_embeds_hidden_size = patch_embeds_hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins])
config = self.get_config()
return config, input_features
def get_config(self):
return ClapAudioConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_mel_bins=self.num_mel_bins,
window_size=self.window_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
patch_stride=self.patch_stride,
projection_dim=self.projection_dim,
depths=self.depths,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
spec_size=self.spec_size,
freq_ratio=self.freq_ratio,
patch_embeds_hidden_size=self.patch_embeds_hidden_size,
)
def create_and_check_model(self, config, input_features):
model = ClapAudioModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_features)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, input_features):
model = ClapAudioModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_features)
self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_features = config_and_inputs
inputs_dict = {"input_features": input_features}
return config, inputs_dict
@require_torch
class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = ClapAudioModelTester(self)
self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ClapAudioModel does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[2 * self.model_tester.patch_embeds_hidden_size, 2 * self.model_tester.patch_embeds_hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_features"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_training(self):
pass
@unittest.skip(reason="ClapAudioModel does not output any loss term in the forward pass")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ClapAudioModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "laion/clap-htsat-fused"
model = ClapAudioModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
model_name = "laion/clap-htsat-fused"
model = ClapAudioModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "audio_projection"))
class ClapTextModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
projection_hidden_act="relu",
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.projection_hidden_act = projection_hidden_act
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return ClapTextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
projection_hidden_act=self.projection_hidden_act,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = ClapTextModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_model_with_projection(self, config, input_ids, input_mask):
model = ClapTextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class ClapTextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = ClapTextModelTester(self)
self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_projection(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass")
def test_training(self):
pass
@unittest.skip(reason="ClapTextModel does not output any loss term in the forward pass")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ClapTextModel does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="ClapTextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "laion/clap-htsat-fused"
model = ClapTextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_model_with_projection_from_pretrained(self):
model_name = "laion/clap-htsat-fused"
model = ClapTextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
class ClapModelTester:
def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if audio_kwargs is None:
audio_kwargs = {}
self.parent = parent
self.text_model_tester = ClapTextModelTester(parent, **text_kwargs)
self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.is_training = is_training
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
_, input_features = self.audio_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, input_features
def get_config(self):
return ClapConfig.from_text_audio_configs(
self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64
)
def create_and_check_model(self, config, input_ids, attention_mask, input_features):
model = ClapModel(config).to(torch_device).eval()
with torch.no_grad():
result = model(input_ids, input_features, attention_mask)
self.parent.assertEqual(
result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size)
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, input_features = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"input_features": input_features,
"return_loss": True,
}
return config, inputs_dict
@require_torch
class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (ClapModel,) if is_torch_available() else ()
pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = ClapModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="ClapModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for CLAP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
input_features = inputs_dict["input_features"] # CLAP needs input_features
traced_model = torch.jit.trace(model, (input_ids, input_features))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_audio_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save ClapConfig and check if we can load ClapAudioConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict())
# Save ClapConfig and check if we can load ClapTextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = ClapTextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "laion/clap-htsat-fused"
model = ClapModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
@require_torch
class ClapModelIntegrationTest(unittest.TestCase):
paddings = ["repeatpad", "repeat", "pad"]
def test_integration_unfused(self):
EXPECTED_MEANS_UNFUSED = {
"repeatpad": 0.0024,
"pad": 0.0020,
"repeat": 0.0023,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[-1]
model_id = "laion/clap-htsat-unfused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to(
torch_device
)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_UNFUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_integration_fused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.00069,
"repeat": 0.00196,
"pad": -0.000379,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[-1]
model_id = "laion/clap-htsat-fused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(
audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion"
).to(torch_device)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_batched_fused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.0010,
"repeat": 0.0020,
"pad": 0.0006,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]]
model_id = "laion/clap-htsat-fused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to(
torch_device
)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)
def test_batched_unfused(self):
EXPECTED_MEANS_FUSED = {
"repeatpad": 0.0016,
"repeat": 0.0019,
"pad": 0.0019,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]]
model_id = "laion/clap-htsat-unfused"
model = ClapModel.from_pretrained(model_id).to(torch_device)
processor = ClapProcessor.from_pretrained(model_id)
for padding in self.paddings:
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device)
audio_embed = model.get_audio_features(**inputs)
expected_mean = EXPECTED_MEANS_FUSED[padding]
self.assertTrue(
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3)
)