transformers/tests/models/camembert/test_tokenization_camembert.py

215 lines
11 KiB
Python

# coding=utf-8
# Copyright 2018 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import AddedToken, CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
SAMPLE_BPE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
FRAMEWORK = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class CamembertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "almanach/camembert-base"
tokenizer_class = CamembertTokenizer
rust_tokenizer_class = CamembertTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = True
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = CamembertTokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
@unittest.skip(
"Token maps are not equal because someone set the probability of ('<unk>NOTUSED', -100), so it's never encoded for fast"
)
def test_special_tokens_map_equal(self):
return
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "<pad>"
token_id = 1 # 1 is the offset id, but in the spm vocab it's 3
self.assertEqual(self.get_tokenizer().convert_tokens_to_ids(token), token_id)
self.assertEqual(self.get_tokenizer().convert_ids_to_tokens(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "<s>NOTUSED")
self.assertEqual(vocab_keys[1], "<pad>")
self.assertEqual(vocab_keys[-1], "<mask>")
self.assertEqual(len(vocab_keys), 1_005)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 1_000)
def test_rust_and_python_bpe_tokenizers(self):
tokenizer = CamembertTokenizer(SAMPLE_BPE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
rust_tokenizer = CamembertTokenizerFast.from_pretrained(self.tmpdirname)
sequence = "I was born in 92000, and this is falsé."
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
tokens = tokenizer.convert_ids_to_tokens(ids)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "I was born in 92000, and this is falsé."
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
@slow
def test_tokenizer_integration(self):
expected_encoding = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip
# camembert is a french model. So we also use french texts.
sequences = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="almanach/camembert-base",
revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf",
sequences=sequences,
)
# Overwritten because we have to use from slow (online pretrained is wrong, the tokenizer.json has a whole)
def test_added_tokens_serialization(self):
self.maxDiff = None
# Utility to test the added vocab
def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir):
tokenizer = tokenizer_class.from_pretrained(temp_dir)
self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens)
self.assertIn(new_eos, tokenizer.added_tokens_decoder.values())
self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos)
self.assertDictEqual(expected, tokenizer.added_tokens_decoder)
return tokenizer
new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
# Load a slow tokenizer from the hub, init with the new token for fast to also include it
tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos)
EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder
with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"):
self.assertEqual(tokenizer._eos_token, new_eos)
self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values()))
with tempfile.TemporaryDirectory() as tmp_dir_2:
tokenizer.save_pretrained(tmp_dir_2)
with self.subTest(
"Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class"
):
_test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2
)
if self.rust_tokenizer_class is not None:
with self.subTest(
"Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class"
):
tokenizer_fast = _test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2
)
with tempfile.TemporaryDirectory() as tmp_dir_3:
tokenizer_fast.save_pretrained(tmp_dir_3)
with self.subTest(
"Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class"
):
_test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
)
with self.subTest(
"Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class"
):
_test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
)
with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"):
if self.rust_tokenizer_class is not None:
tokenizer_fast = self.rust_tokenizer_class.from_pretrained(
pretrained_name, eos_token=new_eos, from_slow=True
)
self.assertEqual(tokenizer_fast._eos_token, new_eos)
self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values()))
# We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright
with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"):
self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder)
EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder
with tempfile.TemporaryDirectory() as tmp_dir_4:
tokenizer_fast.save_pretrained(tmp_dir_4)
with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"):
_test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4
)
with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"):
_test_added_vocab_and_eos(
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4
)