183 lines
8.0 KiB
Python
183 lines
8.0 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
|
|
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_tokenizers, require_torch
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
|
|
|
|
|
|
@require_tokenizers
|
|
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "facebook/bart-base"
|
|
tokenizer_class = BartTokenizer
|
|
rust_tokenizer_class = BartTokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_filter = filter_roberta_detectors
|
|
# from_pretrained_kwargs = {'add_prefix_space': True}
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
return "lower newer", "lower newer"
|
|
|
|
@cached_property
|
|
def default_tokenizer(self):
|
|
return BartTokenizer.from_pretrained("facebook/bart-large")
|
|
|
|
@cached_property
|
|
def default_tokenizer_fast(self):
|
|
return BartTokenizerFast.from_pretrained("facebook/bart-large")
|
|
|
|
@require_torch
|
|
def test_prepare_batch(self):
|
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
|
|
expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
|
|
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
|
|
batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt")
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
|
|
self.assertEqual((2, 9), batch.input_ids.shape)
|
|
self.assertEqual((2, 9), batch.attention_mask.shape)
|
|
result = batch.input_ids.tolist()[0]
|
|
self.assertListEqual(expected_src_tokens, result)
|
|
# Test that special tokens are reset
|
|
|
|
@require_torch
|
|
def test_prepare_batch_empty_target_text(self):
|
|
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
|
|
batch = tokenizer(src_text, padding=True, return_tensors="pt")
|
|
# check if input_ids are returned and no labels
|
|
self.assertIn("input_ids", batch)
|
|
self.assertIn("attention_mask", batch)
|
|
self.assertNotIn("labels", batch)
|
|
self.assertNotIn("decoder_attention_mask", batch)
|
|
|
|
@require_torch
|
|
def test_tokenizer_as_target_length(self):
|
|
tgt_text = [
|
|
"Summary of the text.",
|
|
"Another summary.",
|
|
]
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
|
|
targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt")
|
|
self.assertEqual(32, targets["input_ids"].shape[1])
|
|
|
|
@require_torch
|
|
def test_prepare_batch_not_longer_than_maxlen(self):
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
|
|
batch = tokenizer(
|
|
["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt"
|
|
)
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
self.assertEqual(batch.input_ids.shape, (2, 1024))
|
|
|
|
@require_torch
|
|
def test_special_tokens(self):
|
|
src_text = ["A long paragraph for summarization."]
|
|
tgt_text = [
|
|
"Summary of the text.",
|
|
]
|
|
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
|
|
inputs = tokenizer(src_text, return_tensors="pt")
|
|
targets = tokenizer(text_target=tgt_text, return_tensors="pt")
|
|
input_ids = inputs["input_ids"]
|
|
labels = targets["input_ids"]
|
|
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
|
|
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
|
|
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
|
|
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
|
|
|
|
def test_pretokenized_inputs(self):
|
|
pass
|
|
|
|
def test_embeded_special_tokens(self):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
sentence = "A, <mask> AllenNLP sentence."
|
|
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
|
|
|
|
# token_type_ids should put 0 everywhere
|
|
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
|
|
|
|
# attention_mask should put 1 everywhere, so sum over length should be 1
|
|
self.assertEqual(
|
|
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
|
|
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
|
|
)
|
|
|
|
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
|
|
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
|
|
|
|
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
|
|
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
|
|
|
|
self.assertSequenceEqual(
|
|
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
|
|
)
|
|
self.assertSequenceEqual(
|
|
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
|
|
)
|