340 lines
12 KiB
Python
340 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Union
|
|
|
|
import tqdm
|
|
from filelock import FileLock
|
|
|
|
from transformers import (
|
|
BartTokenizer,
|
|
BartTokenizerFast,
|
|
DataProcessor,
|
|
PreTrainedTokenizer,
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
XLMRobertaTokenizer,
|
|
is_tf_available,
|
|
is_torch_available,
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class InputExample:
|
|
"""
|
|
A single training/test example for simple sequence classification.
|
|
|
|
Args:
|
|
guid: Unique id for the example.
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
sequence tasks, only this sequence must be specified.
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
Only must be specified for sequence pair tasks.
|
|
label: (Optional) string. The label of the example. This should be
|
|
specified for train and dev examples, but not for test examples.
|
|
pairID: (Optional) string. Unique identifier for the pair of sentences.
|
|
"""
|
|
|
|
guid: str
|
|
text_a: str
|
|
text_b: Optional[str] = None
|
|
label: Optional[str] = None
|
|
pairID: Optional[str] = None
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class InputFeatures:
|
|
"""
|
|
A single set of features of data.
|
|
Property names are the same names as the corresponding inputs to a model.
|
|
|
|
Args:
|
|
input_ids: Indices of input sequence tokens in the vocabulary.
|
|
attention_mask: Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
|
|
token_type_ids: (Optional) Segment token indices to indicate first and second
|
|
portions of the inputs. Only some models use them.
|
|
label: (Optional) Label corresponding to the input. Int for classification problems,
|
|
float for regression problems.
|
|
pairID: (Optional) Unique identifier for the pair of sentences.
|
|
"""
|
|
|
|
input_ids: List[int]
|
|
attention_mask: Optional[List[int]] = None
|
|
token_type_ids: Optional[List[int]] = None
|
|
label: Optional[Union[int, float]] = None
|
|
pairID: Optional[int] = None
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
class HansDataset(Dataset):
|
|
"""
|
|
This will be superseded by a framework-agnostic approach
|
|
soon.
|
|
"""
|
|
|
|
features: List[InputFeatures]
|
|
|
|
def __init__(
|
|
self,
|
|
data_dir: str,
|
|
tokenizer: PreTrainedTokenizer,
|
|
task: str,
|
|
max_seq_length: Optional[int] = None,
|
|
overwrite_cache=False,
|
|
evaluate: bool = False,
|
|
):
|
|
processor = hans_processors[task]()
|
|
|
|
cached_features_file = os.path.join(
|
|
data_dir,
|
|
"cached_{}_{}_{}_{}".format(
|
|
"dev" if evaluate else "train",
|
|
tokenizer.__class__.__name__,
|
|
str(max_seq_length),
|
|
task,
|
|
),
|
|
)
|
|
label_list = processor.get_labels()
|
|
if tokenizer.__class__ in (
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
XLMRobertaTokenizer,
|
|
BartTokenizer,
|
|
BartTokenizerFast,
|
|
):
|
|
# HACK(label indices are swapped in RoBERTa pretrained model)
|
|
label_list[1], label_list[2] = label_list[2], label_list[1]
|
|
self.label_list = label_list
|
|
|
|
# Make sure only the first process in distributed training processes the dataset,
|
|
# and the others will use the cache.
|
|
lock_path = cached_features_file + ".lock"
|
|
with FileLock(lock_path):
|
|
if os.path.exists(cached_features_file) and not overwrite_cache:
|
|
logger.info(f"Loading features from cached file {cached_features_file}")
|
|
self.features = torch.load(cached_features_file)
|
|
else:
|
|
logger.info(f"Creating features from dataset file at {data_dir}")
|
|
|
|
examples = (
|
|
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
|
|
)
|
|
|
|
logger.info("Training examples: %s", len(examples))
|
|
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
|
|
logger.info("Saving features into cached file %s", cached_features_file)
|
|
torch.save(self.features, cached_features_file)
|
|
|
|
def __len__(self):
|
|
return len(self.features)
|
|
|
|
def __getitem__(self, i) -> InputFeatures:
|
|
return self.features[i]
|
|
|
|
def get_labels(self):
|
|
return self.label_list
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
class TFHansDataset:
|
|
"""
|
|
This will be superseded by a framework-agnostic approach
|
|
soon.
|
|
"""
|
|
|
|
features: List[InputFeatures]
|
|
|
|
def __init__(
|
|
self,
|
|
data_dir: str,
|
|
tokenizer: PreTrainedTokenizer,
|
|
task: str,
|
|
max_seq_length: Optional[int] = 128,
|
|
overwrite_cache=False,
|
|
evaluate: bool = False,
|
|
):
|
|
processor = hans_processors[task]()
|
|
label_list = processor.get_labels()
|
|
if tokenizer.__class__ in (
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
XLMRobertaTokenizer,
|
|
BartTokenizer,
|
|
BartTokenizerFast,
|
|
):
|
|
# HACK(label indices are swapped in RoBERTa pretrained model)
|
|
label_list[1], label_list[2] = label_list[2], label_list[1]
|
|
self.label_list = label_list
|
|
|
|
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
|
|
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
|
|
|
|
def gen():
|
|
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
|
|
if ex_index % 10000 == 0:
|
|
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
|
|
|
|
yield (
|
|
{
|
|
"example_id": 0,
|
|
"input_ids": ex.input_ids,
|
|
"attention_mask": ex.attention_mask,
|
|
"token_type_ids": ex.token_type_ids,
|
|
},
|
|
ex.label,
|
|
)
|
|
|
|
self.dataset = tf.data.Dataset.from_generator(
|
|
gen,
|
|
(
|
|
{
|
|
"example_id": tf.int32,
|
|
"input_ids": tf.int32,
|
|
"attention_mask": tf.int32,
|
|
"token_type_ids": tf.int32,
|
|
},
|
|
tf.int64,
|
|
),
|
|
(
|
|
{
|
|
"example_id": tf.TensorShape([]),
|
|
"input_ids": tf.TensorShape([None, None]),
|
|
"attention_mask": tf.TensorShape([None, None]),
|
|
"token_type_ids": tf.TensorShape([None, None]),
|
|
},
|
|
tf.TensorShape([]),
|
|
),
|
|
)
|
|
|
|
def get_dataset(self):
|
|
return self.dataset
|
|
|
|
def __len__(self):
|
|
return len(self.features)
|
|
|
|
def __getitem__(self, i) -> InputFeatures:
|
|
return self.features[i]
|
|
|
|
def get_labels(self):
|
|
return self.label_list
|
|
|
|
|
|
class HansProcessor(DataProcessor):
|
|
"""Processor for the HANS data set."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class.
|
|
Note that we follow the standard three labels for MNLI
|
|
(see :class:`~transformers.data.processors.utils.MnliProcessor`)
|
|
but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while
|
|
`entailment` is label 1."""
|
|
return ["contradiction", "entailment", "neutral"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for i, line in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, line[0])
|
|
text_a = line[5]
|
|
text_b = line[6]
|
|
pairID = line[7][2:] if line[7].startswith("ex") else line[7]
|
|
label = line[0]
|
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID))
|
|
return examples
|
|
|
|
|
|
def hans_convert_examples_to_features(
|
|
examples: List[InputExample],
|
|
label_list: List[str],
|
|
max_length: int,
|
|
tokenizer: PreTrainedTokenizer,
|
|
):
|
|
"""
|
|
Loads a data file into a list of ``InputFeatures``
|
|
|
|
Args:
|
|
examples: List of ``InputExamples`` containing the examples.
|
|
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method.
|
|
max_length: Maximum example length.
|
|
tokenizer: Instance of a tokenizer that will tokenize the examples.
|
|
|
|
Returns:
|
|
A list of task-specific ``InputFeatures`` which can be fed to the model.
|
|
|
|
"""
|
|
|
|
label_map = {label: i for i, label in enumerate(label_list)}
|
|
|
|
features = []
|
|
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
|
|
if ex_index % 10000 == 0:
|
|
logger.info("Writing example %d" % (ex_index))
|
|
|
|
inputs = tokenizer(
|
|
example.text_a,
|
|
example.text_b,
|
|
add_special_tokens=True,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
return_overflowing_tokens=True,
|
|
)
|
|
|
|
label = label_map[example.label] if example.label in label_map else 0
|
|
|
|
pairID = int(example.pairID)
|
|
|
|
features.append(InputFeatures(**inputs, label=label, pairID=pairID))
|
|
|
|
for i, example in enumerate(examples[:5]):
|
|
logger.info("*** Example ***")
|
|
logger.info(f"guid: {example}")
|
|
logger.info(f"features: {features[i]}")
|
|
|
|
return features
|
|
|
|
|
|
hans_tasks_num_labels = {
|
|
"hans": 3,
|
|
}
|
|
|
|
hans_processors = {
|
|
"hans": HansProcessor,
|
|
}
|