138 lines
6.1 KiB
Python
138 lines
6.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
A subclass of `Trainer` specific to Question-Answering tasks
|
|
"""
|
|
|
|
import math
|
|
import time
|
|
|
|
from transformers import Trainer, is_torch_xla_available
|
|
from transformers.trainer_utils import PredictionOutput, speed_metrics
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
import torch_xla.debug.metrics as met
|
|
|
|
|
|
class QuestionAnsweringTrainer(Trainer):
|
|
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.eval_examples = eval_examples
|
|
self.post_process_function = post_process_function
|
|
|
|
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
|
|
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
|
|
eval_dataloader = self.get_eval_dataloader(eval_dataset)
|
|
eval_examples = self.eval_examples if eval_examples is None else eval_examples
|
|
|
|
# Temporarily disable metric computation, we will do it in the loop here.
|
|
compute_metrics = self.compute_metrics
|
|
self.compute_metrics = None
|
|
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
|
start_time = time.time()
|
|
try:
|
|
output = eval_loop(
|
|
eval_dataloader,
|
|
description="Evaluation",
|
|
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
|
# self.args.prediction_loss_only
|
|
prediction_loss_only=True if compute_metrics is None else None,
|
|
ignore_keys=ignore_keys,
|
|
metric_key_prefix=metric_key_prefix,
|
|
)
|
|
finally:
|
|
self.compute_metrics = compute_metrics
|
|
total_batch_size = self.args.eval_batch_size * self.args.world_size
|
|
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
|
|
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
|
|
output.metrics.update(
|
|
speed_metrics(
|
|
metric_key_prefix,
|
|
start_time,
|
|
num_samples=output.num_samples,
|
|
num_steps=math.ceil(output.num_samples / total_batch_size),
|
|
)
|
|
)
|
|
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
|
|
# Only the main node write the results by default
|
|
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions)
|
|
metrics = self.compute_metrics(eval_preds)
|
|
|
|
# Prefix all keys with metric_key_prefix + '_'
|
|
for key in list(metrics.keys()):
|
|
if not key.startswith(f"{metric_key_prefix}_"):
|
|
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
|
metrics.update(output.metrics)
|
|
else:
|
|
metrics = output.metrics
|
|
|
|
if self.args.should_log:
|
|
# Only the main node log the results by default
|
|
self.log(metrics)
|
|
|
|
if self.args.tpu_metrics_debug or self.args.debug:
|
|
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
|
|
xm.master_print(met.metrics_report())
|
|
|
|
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
|
|
return metrics
|
|
|
|
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
|
|
predict_dataloader = self.get_test_dataloader(predict_dataset)
|
|
|
|
# Temporarily disable metric computation, we will do it in the loop here.
|
|
compute_metrics = self.compute_metrics
|
|
self.compute_metrics = None
|
|
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
|
start_time = time.time()
|
|
try:
|
|
output = eval_loop(
|
|
predict_dataloader,
|
|
description="Prediction",
|
|
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
|
# self.args.prediction_loss_only
|
|
prediction_loss_only=True if compute_metrics is None else None,
|
|
ignore_keys=ignore_keys,
|
|
metric_key_prefix=metric_key_prefix,
|
|
)
|
|
finally:
|
|
self.compute_metrics = compute_metrics
|
|
total_batch_size = self.args.eval_batch_size * self.args.world_size
|
|
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
|
|
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
|
|
output.metrics.update(
|
|
speed_metrics(
|
|
metric_key_prefix,
|
|
start_time,
|
|
num_samples=output.num_samples,
|
|
num_steps=math.ceil(output.num_samples / total_batch_size),
|
|
)
|
|
)
|
|
|
|
if self.post_process_function is None or self.compute_metrics is None:
|
|
return output
|
|
|
|
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
|
|
metrics = self.compute_metrics(predictions)
|
|
|
|
# Prefix all keys with metric_key_prefix + '_'
|
|
for key in list(metrics.keys()):
|
|
if not key.startswith(f"{metric_key_prefix}_"):
|
|
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
|
metrics.update(output.metrics)
|
|
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
|