1189 lines
47 KiB
Python
1189 lines
47 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Utility that performs several consistency checks on the repo. This includes:
|
|
- checking all models are properly defined in the __init__ of models/
|
|
- checking all models are in the main __init__
|
|
- checking all models are properly tested
|
|
- checking all object in the main __init__ are documented
|
|
- checking all models are in at least one auto class
|
|
- checking all the auto mapping are properly defined (no typos, importable)
|
|
- checking the list of deprecated models is up to date
|
|
|
|
Use from the root of the repo with (as used in `make repo-consistency`):
|
|
|
|
```bash
|
|
python utils/check_repo.py
|
|
```
|
|
|
|
It has no auto-fix mode.
|
|
"""
|
|
import inspect
|
|
import os
|
|
import re
|
|
import sys
|
|
import types
|
|
import warnings
|
|
from collections import OrderedDict
|
|
from difflib import get_close_matches
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
from transformers import is_flax_available, is_tf_available, is_torch_available
|
|
from transformers.models.auto import get_values
|
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
|
|
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
|
|
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
|
|
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
|
|
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
|
|
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/check_repo.py
|
|
PATH_TO_TRANSFORMERS = "src/transformers"
|
|
PATH_TO_TESTS = "tests"
|
|
PATH_TO_DOC = "docs/source/en"
|
|
|
|
# Update this list with models that are supposed to be private.
|
|
PRIVATE_MODELS = [
|
|
"AltRobertaModel",
|
|
"DPRSpanPredictor",
|
|
"UdopStack",
|
|
"LongT5Stack",
|
|
"RealmBertModel",
|
|
"T5Stack",
|
|
"MT5Stack",
|
|
"UMT5Stack",
|
|
"Pop2PianoStack",
|
|
"SwitchTransformersStack",
|
|
"TFDPRSpanPredictor",
|
|
"MaskFormerSwinModel",
|
|
"MaskFormerSwinPreTrainedModel",
|
|
"BridgeTowerTextModel",
|
|
"BridgeTowerVisionModel",
|
|
"Kosmos2TextModel",
|
|
"Kosmos2TextForCausalLM",
|
|
"Kosmos2VisionModel",
|
|
"SeamlessM4Tv2TextToUnitModel",
|
|
"SeamlessM4Tv2CodeHifiGan",
|
|
"SeamlessM4Tv2TextToUnitForConditionalGeneration",
|
|
]
|
|
|
|
# Update this list for models that are not tested with a comment explaining the reason it should not be.
|
|
# Being in this list is an exception and should **not** be the rule.
|
|
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
|
|
# models to ignore for not tested
|
|
"FuyuForCausalLM", # Not tested fort now
|
|
"InstructBlipQFormerModel", # Building part of bigger (tested) model.
|
|
"UMT5EncoderModel", # Building part of bigger (tested) model.
|
|
"Blip2QFormerModel", # Building part of bigger (tested) model.
|
|
"ErnieMForInformationExtraction",
|
|
"FastSpeech2ConformerHifiGan", # Already tested by SpeechT5HifiGan (# Copied from)
|
|
"FastSpeech2ConformerWithHifiGan", # Built with two smaller (tested) models.
|
|
"GraphormerDecoderHead", # Building part of bigger (tested) model.
|
|
"JukeboxVQVAE", # Building part of bigger (tested) model.
|
|
"JukeboxPrior", # Building part of bigger (tested) model.
|
|
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
|
|
"SegformerDecodeHead", # Building part of bigger (tested) model.
|
|
"MgpstrModel", # Building part of bigger (tested) model.
|
|
"BertLMHeadModel", # Needs to be setup as decoder.
|
|
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
|
|
"RealmBertModel", # Building part of bigger (tested) model.
|
|
"RealmReader", # Not regular model.
|
|
"RealmScorer", # Not regular model.
|
|
"RealmForOpenQA", # Not regular model.
|
|
"ReformerForMaskedLM", # Needs to be setup as decoder.
|
|
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
|
|
"TFRobertaForMultipleChoice", # TODO: fix
|
|
"TFRobertaPreLayerNormForMultipleChoice", # TODO: fix
|
|
"SeparableConv1D", # Building part of bigger (tested) model.
|
|
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
|
|
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
|
|
"OPTDecoderWrapper",
|
|
"TFSegformerDecodeHead", # Not a regular model.
|
|
"AltRobertaModel", # Building part of bigger (tested) model.
|
|
"BlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
|
|
"TFBlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
|
|
"BridgeTowerTextModel", # No need to test it as it is tested by BridgeTowerModel model.
|
|
"BridgeTowerVisionModel", # No need to test it as it is tested by BridgeTowerModel model.
|
|
"BarkCausalModel", # Building part of bigger (tested) model.
|
|
"BarkModel", # Does not have a forward signature - generation tested with integration tests.
|
|
"SeamlessM4TTextToUnitModel", # Building part of bigger (tested) model.
|
|
"SeamlessM4TCodeHifiGan", # Building part of bigger (tested) model.
|
|
"SeamlessM4TTextToUnitForConditionalGeneration", # Building part of bigger (tested) model.
|
|
]
|
|
|
|
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
|
|
# trigger the common tests.
|
|
TEST_FILES_WITH_NO_COMMON_TESTS = [
|
|
"models/decision_transformer/test_modeling_decision_transformer.py",
|
|
"models/camembert/test_modeling_camembert.py",
|
|
"models/mt5/test_modeling_flax_mt5.py",
|
|
"models/mbart/test_modeling_mbart.py",
|
|
"models/mt5/test_modeling_mt5.py",
|
|
"models/pegasus/test_modeling_pegasus.py",
|
|
"models/camembert/test_modeling_tf_camembert.py",
|
|
"models/mt5/test_modeling_tf_mt5.py",
|
|
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
|
|
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
|
|
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
|
|
"models/xlm_roberta/test_modeling_xlm_roberta.py",
|
|
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
|
|
"models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
|
|
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
|
|
"models/decision_transformer/test_modeling_decision_transformer.py",
|
|
"models/bark/test_modeling_bark.py",
|
|
]
|
|
|
|
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
|
|
# should **not** be the rule.
|
|
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
|
|
# models to ignore for model xxx mapping
|
|
"AlignTextModel",
|
|
"AlignVisionModel",
|
|
"ClapTextModel",
|
|
"ClapTextModelWithProjection",
|
|
"ClapAudioModel",
|
|
"ClapAudioModelWithProjection",
|
|
"Blip2ForConditionalGeneration",
|
|
"Blip2QFormerModel",
|
|
"Blip2VisionModel",
|
|
"ErnieMForInformationExtraction",
|
|
"FastSpeech2ConformerHifiGan",
|
|
"FastSpeech2ConformerWithHifiGan",
|
|
"GitVisionModel",
|
|
"GraphormerModel",
|
|
"GraphormerForGraphClassification",
|
|
"BlipForConditionalGeneration",
|
|
"BlipForImageTextRetrieval",
|
|
"BlipForQuestionAnswering",
|
|
"BlipVisionModel",
|
|
"BlipTextLMHeadModel",
|
|
"BlipTextModel",
|
|
"BrosSpadeEEForTokenClassification",
|
|
"BrosSpadeELForTokenClassification",
|
|
"TFBlipForConditionalGeneration",
|
|
"TFBlipForImageTextRetrieval",
|
|
"TFBlipForQuestionAnswering",
|
|
"TFBlipVisionModel",
|
|
"TFBlipTextLMHeadModel",
|
|
"TFBlipTextModel",
|
|
"Swin2SRForImageSuperResolution",
|
|
"BridgeTowerForImageAndTextRetrieval",
|
|
"BridgeTowerForMaskedLM",
|
|
"BridgeTowerForContrastiveLearning",
|
|
"CLIPSegForImageSegmentation",
|
|
"CLIPSegVisionModel",
|
|
"CLIPSegTextModel",
|
|
"EsmForProteinFolding",
|
|
"GPTSanJapaneseModel",
|
|
"TimeSeriesTransformerForPrediction",
|
|
"InformerForPrediction",
|
|
"AutoformerForPrediction",
|
|
"PatchTSTForPretraining",
|
|
"PatchTSTForPrediction",
|
|
"JukeboxVQVAE",
|
|
"JukeboxPrior",
|
|
"SamModel",
|
|
"DPTForDepthEstimation",
|
|
"DecisionTransformerGPT2Model",
|
|
"GLPNForDepthEstimation",
|
|
"ViltForImagesAndTextClassification",
|
|
"ViltForImageAndTextRetrieval",
|
|
"ViltForTokenClassification",
|
|
"ViltForMaskedLM",
|
|
"PerceiverForMultimodalAutoencoding",
|
|
"PerceiverForOpticalFlow",
|
|
"SegformerDecodeHead",
|
|
"TFSegformerDecodeHead",
|
|
"FlaxBeitForMaskedImageModeling",
|
|
"BeitForMaskedImageModeling",
|
|
"ChineseCLIPTextModel",
|
|
"ChineseCLIPVisionModel",
|
|
"CLIPTextModel",
|
|
"CLIPTextModelWithProjection",
|
|
"CLIPVisionModelWithProjection",
|
|
"ClvpForCausalLM",
|
|
"ClvpModel",
|
|
"GroupViTTextModel",
|
|
"GroupViTVisionModel",
|
|
"TFCLIPTextModel",
|
|
"TFCLIPVisionModel",
|
|
"TFGroupViTTextModel",
|
|
"TFGroupViTVisionModel",
|
|
"FlaxCLIPTextModel",
|
|
"FlaxCLIPTextModelWithProjection",
|
|
"FlaxCLIPVisionModel",
|
|
"FlaxWav2Vec2ForCTC",
|
|
"DetrForSegmentation",
|
|
"Pix2StructVisionModel",
|
|
"Pix2StructTextModel",
|
|
"Pix2StructForConditionalGeneration",
|
|
"ConditionalDetrForSegmentation",
|
|
"DPRReader",
|
|
"FlaubertForQuestionAnswering",
|
|
"FlavaImageCodebook",
|
|
"FlavaTextModel",
|
|
"FlavaImageModel",
|
|
"FlavaMultimodalModel",
|
|
"GPT2DoubleHeadsModel",
|
|
"GPTSw3DoubleHeadsModel",
|
|
"InstructBlipVisionModel",
|
|
"InstructBlipQFormerModel",
|
|
"LayoutLMForQuestionAnswering",
|
|
"LukeForMaskedLM",
|
|
"LukeForEntityClassification",
|
|
"LukeForEntityPairClassification",
|
|
"LukeForEntitySpanClassification",
|
|
"MgpstrModel",
|
|
"OpenAIGPTDoubleHeadsModel",
|
|
"OwlViTTextModel",
|
|
"OwlViTVisionModel",
|
|
"Owlv2TextModel",
|
|
"Owlv2VisionModel",
|
|
"OwlViTForObjectDetection",
|
|
"PatchTSMixerForPrediction",
|
|
"PatchTSMixerForPretraining",
|
|
"RagModel",
|
|
"RagSequenceForGeneration",
|
|
"RagTokenForGeneration",
|
|
"RealmEmbedder",
|
|
"RealmForOpenQA",
|
|
"RealmScorer",
|
|
"RealmReader",
|
|
"TFDPRReader",
|
|
"TFGPT2DoubleHeadsModel",
|
|
"TFLayoutLMForQuestionAnswering",
|
|
"TFOpenAIGPTDoubleHeadsModel",
|
|
"TFRagModel",
|
|
"TFRagSequenceForGeneration",
|
|
"TFRagTokenForGeneration",
|
|
"Wav2Vec2ForCTC",
|
|
"HubertForCTC",
|
|
"SEWForCTC",
|
|
"SEWDForCTC",
|
|
"XLMForQuestionAnswering",
|
|
"XLNetForQuestionAnswering",
|
|
"SeparableConv1D",
|
|
"VisualBertForRegionToPhraseAlignment",
|
|
"VisualBertForVisualReasoning",
|
|
"VisualBertForQuestionAnswering",
|
|
"VisualBertForMultipleChoice",
|
|
"TFWav2Vec2ForCTC",
|
|
"TFHubertForCTC",
|
|
"XCLIPVisionModel",
|
|
"XCLIPTextModel",
|
|
"AltCLIPTextModel",
|
|
"AltCLIPVisionModel",
|
|
"AltRobertaModel",
|
|
"TvltForAudioVisualClassification",
|
|
"BarkCausalModel",
|
|
"BarkCoarseModel",
|
|
"BarkFineModel",
|
|
"BarkSemanticModel",
|
|
"MusicgenMelodyModel",
|
|
"MusicgenModel",
|
|
"MusicgenForConditionalGeneration",
|
|
"SpeechT5ForSpeechToSpeech",
|
|
"SpeechT5ForTextToSpeech",
|
|
"SpeechT5HifiGan",
|
|
"VitMatteForImageMatting",
|
|
"SeamlessM4TTextToUnitModel",
|
|
"SeamlessM4TTextToUnitForConditionalGeneration",
|
|
"SeamlessM4TCodeHifiGan",
|
|
"SeamlessM4TForSpeechToSpeech", # no auto class for speech-to-speech
|
|
"TvpForVideoGrounding",
|
|
"UdopForConditionalGeneration",
|
|
"SeamlessM4Tv2NARTextToUnitModel",
|
|
"SeamlessM4Tv2NARTextToUnitForConditionalGeneration",
|
|
"SeamlessM4Tv2CodeHifiGan",
|
|
"SeamlessM4Tv2ForSpeechToSpeech", # no auto class for speech-to-speech
|
|
"SegGptForImageSegmentation",
|
|
"SiglipVisionModel",
|
|
"SiglipTextModel",
|
|
]
|
|
|
|
# DO NOT edit this list!
|
|
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
|
|
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
|
|
"FlaxBertLayer",
|
|
"FlaxBigBirdLayer",
|
|
"FlaxRoFormerLayer",
|
|
"TFBertLayer",
|
|
"TFLxmertEncoder",
|
|
"TFLxmertXLayer",
|
|
"TFMPNetLayer",
|
|
"TFMobileBertLayer",
|
|
"TFSegformerLayer",
|
|
"TFViTMAELayer",
|
|
]
|
|
|
|
# Update this list for models that have multiple model types for the same model doc.
|
|
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
|
|
[
|
|
("data2vec-text", "data2vec"),
|
|
("data2vec-audio", "data2vec"),
|
|
("data2vec-vision", "data2vec"),
|
|
("donut-swin", "donut"),
|
|
]
|
|
)
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
|
|
|
|
|
|
def check_missing_backends():
|
|
"""
|
|
Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
|
|
that's not the case but only throw a warning for users running this.
|
|
"""
|
|
missing_backends = []
|
|
if not is_torch_available():
|
|
missing_backends.append("PyTorch")
|
|
if not is_tf_available():
|
|
missing_backends.append("TensorFlow")
|
|
if not is_flax_available():
|
|
missing_backends.append("Flax")
|
|
if len(missing_backends) > 0:
|
|
missing = ", ".join(missing_backends)
|
|
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
|
|
raise Exception(
|
|
"Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
|
|
f"Transformers repo, the following are missing: {missing}."
|
|
)
|
|
else:
|
|
warnings.warn(
|
|
"Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
|
|
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
|
|
"didn't make any change in one of those backends modeling files, you should probably execute the "
|
|
"command above to be on the safe side."
|
|
)
|
|
|
|
|
|
def check_model_list():
|
|
"""
|
|
Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
|
|
"""
|
|
# Get the models from the directory structure of `src/transformers/models/`
|
|
models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
|
|
_models = []
|
|
for model in os.listdir(models_dir):
|
|
if model == "deprecated":
|
|
continue
|
|
model_dir = os.path.join(models_dir, model)
|
|
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
|
|
_models.append(model)
|
|
|
|
# Get the models in the submodule `transformers.models`
|
|
models = [model for model in dir(transformers.models) if not model.startswith("__")]
|
|
|
|
missing_models = sorted(set(_models).difference(models))
|
|
if missing_models:
|
|
raise Exception(
|
|
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
|
|
)
|
|
|
|
|
|
# If some modeling modules should be ignored for all checks, they should be added in the nested list
|
|
# _ignore_modules of this function.
|
|
def get_model_modules() -> List[str]:
|
|
"""Get all the model modules inside the transformers library (except deprecated models)."""
|
|
_ignore_modules = [
|
|
"modeling_auto",
|
|
"modeling_encoder_decoder",
|
|
"modeling_marian",
|
|
"modeling_mmbt",
|
|
"modeling_outputs",
|
|
"modeling_retribert",
|
|
"modeling_utils",
|
|
"modeling_flax_auto",
|
|
"modeling_flax_encoder_decoder",
|
|
"modeling_flax_utils",
|
|
"modeling_speech_encoder_decoder",
|
|
"modeling_flax_speech_encoder_decoder",
|
|
"modeling_flax_vision_encoder_decoder",
|
|
"modeling_timm_backbone",
|
|
"modeling_tf_auto",
|
|
"modeling_tf_encoder_decoder",
|
|
"modeling_tf_outputs",
|
|
"modeling_tf_pytorch_utils",
|
|
"modeling_tf_utils",
|
|
"modeling_tf_vision_encoder_decoder",
|
|
"modeling_vision_encoder_decoder",
|
|
]
|
|
modules = []
|
|
for model in dir(transformers.models):
|
|
# There are some magic dunder attributes in the dir, we ignore them
|
|
if model == "deprecated" or model.startswith("__"):
|
|
continue
|
|
|
|
model_module = getattr(transformers.models, model)
|
|
for submodule in dir(model_module):
|
|
if submodule.startswith("modeling") and submodule not in _ignore_modules:
|
|
modeling_module = getattr(model_module, submodule)
|
|
if inspect.ismodule(modeling_module):
|
|
modules.append(modeling_module)
|
|
return modules
|
|
|
|
|
|
def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
|
|
"""
|
|
Get the objects in a module that are models.
|
|
|
|
Args:
|
|
module (`types.ModuleType`):
|
|
The module from which we are extracting models.
|
|
include_pretrained (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.
|
|
|
|
Returns:
|
|
List[Tuple[str, type]]: List of models as tuples (class name, actual class).
|
|
"""
|
|
models = []
|
|
model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
|
|
for attr_name in dir(module):
|
|
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
|
|
continue
|
|
attr = getattr(module, attr_name)
|
|
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
|
|
models.append((attr_name, attr))
|
|
return models
|
|
|
|
|
|
def is_building_block(model: str) -> bool:
|
|
"""
|
|
Returns `True` if a model is a building block part of a bigger model.
|
|
"""
|
|
if model.endswith("Wrapper"):
|
|
return True
|
|
if model.endswith("Encoder"):
|
|
return True
|
|
if model.endswith("Decoder"):
|
|
return True
|
|
if model.endswith("Prenet"):
|
|
return True
|
|
|
|
|
|
def is_a_private_model(model: str) -> bool:
|
|
"""Returns `True` if the model should not be in the main init."""
|
|
if model in PRIVATE_MODELS:
|
|
return True
|
|
return is_building_block(model)
|
|
|
|
|
|
def check_models_are_in_init():
|
|
"""Checks all models defined in the library are in the main init."""
|
|
models_not_in_init = []
|
|
dir_transformers = dir(transformers)
|
|
for module in get_model_modules():
|
|
models_not_in_init += [
|
|
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
|
|
]
|
|
|
|
# Remove private models
|
|
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
|
|
if len(models_not_in_init) > 0:
|
|
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
|
|
|
|
|
|
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
|
|
# nested list _ignore_files of this function.
|
|
def get_model_test_files() -> List[str]:
|
|
"""
|
|
Get the model test files.
|
|
|
|
Returns:
|
|
`List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
|
|
defined in this script). They will be considered as paths relative to `tests`. A caller has to use
|
|
`os.path.join(PATH_TO_TESTS, ...)` to access the files.
|
|
"""
|
|
|
|
_ignore_files = [
|
|
"test_modeling_common",
|
|
"test_modeling_encoder_decoder",
|
|
"test_modeling_flax_encoder_decoder",
|
|
"test_modeling_flax_speech_encoder_decoder",
|
|
"test_modeling_marian",
|
|
"test_modeling_tf_common",
|
|
"test_modeling_tf_encoder_decoder",
|
|
]
|
|
test_files = []
|
|
model_test_root = os.path.join(PATH_TO_TESTS, "models")
|
|
model_test_dirs = []
|
|
for x in os.listdir(model_test_root):
|
|
x = os.path.join(model_test_root, x)
|
|
if os.path.isdir(x):
|
|
model_test_dirs.append(x)
|
|
|
|
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
|
|
for file_or_dir in os.listdir(target_dir):
|
|
path = os.path.join(target_dir, file_or_dir)
|
|
if os.path.isfile(path):
|
|
filename = os.path.split(path)[-1]
|
|
if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
|
|
file = os.path.join(*path.split(os.sep)[1:])
|
|
test_files.append(file)
|
|
|
|
return test_files
|
|
|
|
|
|
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
|
|
# for the all_model_classes variable.
|
|
def find_tested_models(test_file: str) -> List[str]:
|
|
"""
|
|
Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
|
|
the common test class.
|
|
|
|
Args:
|
|
test_file (`str`): The path to the test file to check
|
|
|
|
Returns:
|
|
`List[str]`: The list of models tested in that file.
|
|
"""
|
|
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
|
|
content = f.read()
|
|
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
|
|
# Check with one less parenthesis as well
|
|
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
|
|
if len(all_models) > 0:
|
|
model_tested = []
|
|
for entry in all_models:
|
|
for line in entry.split(","):
|
|
name = line.strip()
|
|
if len(name) > 0:
|
|
model_tested.append(name)
|
|
return model_tested
|
|
|
|
|
|
def should_be_tested(model_name: str) -> bool:
|
|
"""
|
|
Whether or not a model should be tested.
|
|
"""
|
|
if model_name in IGNORE_NON_TESTED:
|
|
return False
|
|
return not is_building_block(model_name)
|
|
|
|
|
|
def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
|
|
"""Check models defined in a module are all tested in a given file.
|
|
|
|
Args:
|
|
module (`types.ModuleType`): The module in which we get the models.
|
|
test_file (`str`): The path to the file where the module is tested.
|
|
|
|
Returns:
|
|
`List[str]`: The list of error messages corresponding to models not tested.
|
|
"""
|
|
# XxxPreTrainedModel are not tested
|
|
defined_models = get_models(module)
|
|
tested_models = find_tested_models(test_file)
|
|
if tested_models is None:
|
|
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
|
|
return
|
|
return [
|
|
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
|
|
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
|
|
+ "`utils/check_repo.py`."
|
|
]
|
|
failures = []
|
|
for model_name, _ in defined_models:
|
|
if model_name not in tested_models and should_be_tested(model_name):
|
|
failures.append(
|
|
f"{model_name} is defined in {module.__name__} but is not tested in "
|
|
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
|
|
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
|
|
+ "in the file `utils/check_repo.py`."
|
|
)
|
|
return failures
|
|
|
|
|
|
def check_all_models_are_tested():
|
|
"""Check all models are properly tested."""
|
|
modules = get_model_modules()
|
|
test_files = get_model_test_files()
|
|
failures = []
|
|
for module in modules:
|
|
# Matches a module to its test file.
|
|
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
|
|
if len(test_file) == 0:
|
|
failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
|
|
elif len(test_file) > 1:
|
|
failures.append(f"{module.__name__} has several test files: {test_file}.")
|
|
else:
|
|
test_file = test_file[0]
|
|
new_failures = check_models_are_tested(module, test_file)
|
|
if new_failures is not None:
|
|
failures += new_failures
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
def get_all_auto_configured_models() -> List[str]:
|
|
"""Return the list of all models in at least one auto class."""
|
|
result = set() # To avoid duplicates we concatenate all model classes in a set.
|
|
if is_torch_available():
|
|
for attr_name in dir(transformers.models.auto.modeling_auto):
|
|
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
|
result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
|
|
if is_tf_available():
|
|
for attr_name in dir(transformers.models.auto.modeling_tf_auto):
|
|
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
|
result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
|
|
if is_flax_available():
|
|
for attr_name in dir(transformers.models.auto.modeling_flax_auto):
|
|
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
|
result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
|
|
return list(result)
|
|
|
|
|
|
def ignore_unautoclassed(model_name: str) -> bool:
|
|
"""Rules to determine if a model should be in an auto class."""
|
|
# Special white list
|
|
if model_name in IGNORE_NON_AUTO_CONFIGURED:
|
|
return True
|
|
# Encoder and Decoder should be ignored
|
|
if "Encoder" in model_name or "Decoder" in model_name:
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
|
|
"""
|
|
Check models defined in module are each in an auto class.
|
|
|
|
Args:
|
|
module (`types.ModuleType`):
|
|
The module in which we get the models.
|
|
all_auto_models (`List[str]`):
|
|
The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).
|
|
|
|
Returns:
|
|
`List[str]`: The list of error messages corresponding to models not tested.
|
|
"""
|
|
defined_models = get_models(module)
|
|
failures = []
|
|
for model_name, _ in defined_models:
|
|
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
|
|
failures.append(
|
|
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
|
|
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
|
|
"`utils/check_repo.py`."
|
|
)
|
|
return failures
|
|
|
|
|
|
def check_all_models_are_auto_configured():
|
|
"""Check all models are each in an auto class."""
|
|
# This is where we need to check we have all backends or the check is incomplete.
|
|
check_missing_backends()
|
|
modules = get_model_modules()
|
|
all_auto_models = get_all_auto_configured_models()
|
|
failures = []
|
|
for module in modules:
|
|
new_failures = check_models_are_auto_configured(module, all_auto_models)
|
|
if new_failures is not None:
|
|
failures += new_failures
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
def check_all_auto_object_names_being_defined():
|
|
"""Check all names defined in auto (name) mappings exist in the library."""
|
|
# This is where we need to check we have all backends or the check is incomplete.
|
|
check_missing_backends()
|
|
|
|
failures = []
|
|
mappings_to_check = {
|
|
"TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
|
|
"IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
|
|
"FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
|
|
"PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
|
|
}
|
|
|
|
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
|
|
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
|
|
module = getattr(transformers.models.auto, module_name, None)
|
|
if module is None:
|
|
continue
|
|
# all mappings in a single auto modeling file
|
|
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
|
|
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
|
|
|
|
for name, mapping in mappings_to_check.items():
|
|
for _, class_names in mapping.items():
|
|
if not isinstance(class_names, tuple):
|
|
class_names = (class_names,)
|
|
for class_name in class_names:
|
|
if class_name is None:
|
|
continue
|
|
# dummy object is accepted
|
|
if not hasattr(transformers, class_name):
|
|
# If the class name is in a model name mapping, let's not check if there is a definition in any modeling
|
|
# module, if it's a private model defined in this file.
|
|
if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
|
|
continue
|
|
if name.endswith("MODEL_FOR_IMAGE_MAPPING_NAMES") and is_a_private_model(class_name):
|
|
continue
|
|
failures.append(
|
|
f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
|
|
)
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
def check_all_auto_mapping_names_in_config_mapping_names():
|
|
"""Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
|
|
# This is where we need to check we have all backends or the check is incomplete.
|
|
check_missing_backends()
|
|
|
|
failures = []
|
|
# `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
|
|
mappings_to_check = {
|
|
"IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
|
|
"FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
|
|
"PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
|
|
}
|
|
|
|
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
|
|
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
|
|
module = getattr(transformers.models.auto, module_name, None)
|
|
if module is None:
|
|
continue
|
|
# all mappings in a single auto modeling file
|
|
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
|
|
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
|
|
|
|
for name, mapping in mappings_to_check.items():
|
|
for model_type in mapping:
|
|
if model_type not in CONFIG_MAPPING_NAMES:
|
|
failures.append(
|
|
f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
|
|
"`CONFIG_MAPPING_NAMES`."
|
|
)
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
def check_all_auto_mappings_importable():
|
|
"""Check all auto mappings can be imported."""
|
|
# This is where we need to check we have all backends or the check is incomplete.
|
|
check_missing_backends()
|
|
|
|
failures = []
|
|
mappings_to_check = {}
|
|
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
|
|
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
|
|
module = getattr(transformers.models.auto, module_name, None)
|
|
if module is None:
|
|
continue
|
|
# all mappings in a single auto modeling file
|
|
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
|
|
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
|
|
|
|
for name in mappings_to_check:
|
|
name = name.replace("_MAPPING_NAMES", "_MAPPING")
|
|
if not hasattr(transformers, name):
|
|
failures.append(f"`{name}`")
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
def check_objects_being_equally_in_main_init():
|
|
"""
|
|
Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
|
|
"""
|
|
attrs = dir(transformers)
|
|
|
|
failures = []
|
|
for attr in attrs:
|
|
obj = getattr(transformers, attr)
|
|
if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
|
|
continue
|
|
|
|
module_path = obj.__module__
|
|
module_name = module_path.split(".")[-1]
|
|
module_dir = ".".join(module_path.split(".")[:-1])
|
|
if (
|
|
module_name.startswith("modeling_")
|
|
and not module_name.startswith("modeling_tf_")
|
|
and not module_name.startswith("modeling_flax_")
|
|
):
|
|
parent_module = sys.modules[module_dir]
|
|
|
|
frameworks = []
|
|
if is_tf_available():
|
|
frameworks.append("TF")
|
|
if is_flax_available():
|
|
frameworks.append("Flax")
|
|
|
|
for framework in frameworks:
|
|
other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
|
|
if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
|
|
other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
|
|
other_module = getattr(parent_module, other_module_name)
|
|
if hasattr(other_module, f"{framework}{attr}"):
|
|
if not hasattr(transformers, f"{framework}{attr}"):
|
|
if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
|
|
failures.append(f"{framework}{attr}")
|
|
if hasattr(other_module, f"{framework}_{attr}"):
|
|
if not hasattr(transformers, f"{framework}_{attr}"):
|
|
if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
|
|
failures.append(f"{framework}_{attr}")
|
|
if len(failures) > 0:
|
|
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
|
|
|
|
|
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
|
|
|
|
|
|
def check_decorator_order(filename: str) -> List[int]:
|
|
"""
|
|
Check that in a given test file, the slow decorator is always last.
|
|
|
|
Args:
|
|
filename (`str`): The path to a test file to check.
|
|
|
|
Returns:
|
|
`List[int]`: The list of failures as a list of indices where there are problems.
|
|
"""
|
|
with open(filename, "r", encoding="utf-8", newline="\n") as f:
|
|
lines = f.readlines()
|
|
decorator_before = None
|
|
errors = []
|
|
for i, line in enumerate(lines):
|
|
search = _re_decorator.search(line)
|
|
if search is not None:
|
|
decorator_name = search.groups()[0]
|
|
if decorator_before is not None and decorator_name.startswith("parameterized"):
|
|
errors.append(i)
|
|
decorator_before = decorator_name
|
|
elif decorator_before is not None:
|
|
decorator_before = None
|
|
return errors
|
|
|
|
|
|
def check_all_decorator_order():
|
|
"""Check that in all test files, the slow decorator is always last."""
|
|
errors = []
|
|
for fname in os.listdir(PATH_TO_TESTS):
|
|
if fname.endswith(".py"):
|
|
filename = os.path.join(PATH_TO_TESTS, fname)
|
|
new_errors = check_decorator_order(filename)
|
|
errors += [f"- {filename}, line {i}" for i in new_errors]
|
|
if len(errors) > 0:
|
|
msg = "\n".join(errors)
|
|
raise ValueError(
|
|
"The parameterized decorator (and its variants) should always be first, but this is not the case in the"
|
|
f" following files:\n{msg}"
|
|
)
|
|
|
|
|
|
def find_all_documented_objects() -> List[str]:
|
|
"""
|
|
Parse the content of all doc files to detect which classes and functions it documents.
|
|
|
|
Returns:
|
|
`List[str]`: The list of all object names being documented.
|
|
"""
|
|
documented_obj = []
|
|
for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
|
|
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
|
|
content = f.read()
|
|
raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
|
|
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
|
|
for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
|
|
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
|
|
content = f.read()
|
|
raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
|
|
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
|
|
return documented_obj
|
|
|
|
|
|
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
|
|
DEPRECATED_OBJECTS = [
|
|
"AutoModelWithLMHead",
|
|
"BartPretrainedModel",
|
|
"DataCollator",
|
|
"DataCollatorForSOP",
|
|
"GlueDataset",
|
|
"GlueDataTrainingArguments",
|
|
"LineByLineTextDataset",
|
|
"LineByLineWithRefDataset",
|
|
"LineByLineWithSOPTextDataset",
|
|
"NerPipeline",
|
|
"PretrainedBartModel",
|
|
"PretrainedFSMTModel",
|
|
"SingleSentenceClassificationProcessor",
|
|
"SquadDataTrainingArguments",
|
|
"SquadDataset",
|
|
"SquadExample",
|
|
"SquadFeatures",
|
|
"SquadV1Processor",
|
|
"SquadV2Processor",
|
|
"TFAutoModelWithLMHead",
|
|
"TFBartPretrainedModel",
|
|
"TextDataset",
|
|
"TextDatasetForNextSentencePrediction",
|
|
"Wav2Vec2ForMaskedLM",
|
|
"Wav2Vec2Tokenizer",
|
|
"glue_compute_metrics",
|
|
"glue_convert_examples_to_features",
|
|
"glue_output_modes",
|
|
"glue_processors",
|
|
"glue_tasks_num_labels",
|
|
"squad_convert_examples_to_features",
|
|
"xnli_compute_metrics",
|
|
"xnli_output_modes",
|
|
"xnli_processors",
|
|
"xnli_tasks_num_labels",
|
|
"TFTrainingArguments",
|
|
]
|
|
|
|
# Exceptionally, some objects should not be documented after all rules passed.
|
|
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
|
|
UNDOCUMENTED_OBJECTS = [
|
|
"AddedToken", # This is a tokenizers class.
|
|
"BasicTokenizer", # Internal, should never have been in the main init.
|
|
"CharacterTokenizer", # Internal, should never have been in the main init.
|
|
"DPRPretrainedReader", # Like an Encoder.
|
|
"DummyObject", # Just picked by mistake sometimes.
|
|
"MecabTokenizer", # Internal, should never have been in the main init.
|
|
"ModelCard", # Internal type.
|
|
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
|
|
"TFDPRPretrainedReader", # Like an Encoder.
|
|
"TransfoXLCorpus", # Internal type.
|
|
"WordpieceTokenizer", # Internal, should never have been in the main init.
|
|
"absl", # External module
|
|
"add_end_docstrings", # Internal, should never have been in the main init.
|
|
"add_start_docstrings", # Internal, should never have been in the main init.
|
|
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
|
|
"logger", # Internal logger
|
|
"logging", # External module
|
|
"requires_backends", # Internal function
|
|
"AltRobertaModel", # Internal module
|
|
]
|
|
|
|
# This list should be empty. Objects in it should get their own doc page.
|
|
SHOULD_HAVE_THEIR_OWN_PAGE = [
|
|
# Benchmarks
|
|
"PyTorchBenchmark",
|
|
"PyTorchBenchmarkArguments",
|
|
"TensorFlowBenchmark",
|
|
"TensorFlowBenchmarkArguments",
|
|
"AutoBackbone",
|
|
"BeitBackbone",
|
|
"BitBackbone",
|
|
"ConvNextBackbone",
|
|
"ConvNextV2Backbone",
|
|
"DinatBackbone",
|
|
"Dinov2Backbone",
|
|
"FocalNetBackbone",
|
|
"MaskFormerSwinBackbone",
|
|
"MaskFormerSwinConfig",
|
|
"MaskFormerSwinModel",
|
|
"NatBackbone",
|
|
"PvtV2Backbone",
|
|
"ResNetBackbone",
|
|
"SwinBackbone",
|
|
"Swinv2Backbone",
|
|
"TimmBackbone",
|
|
"TimmBackboneConfig",
|
|
"VitDetBackbone",
|
|
]
|
|
|
|
|
|
def ignore_undocumented(name: str) -> bool:
|
|
"""Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
|
|
# NOT DOCUMENTED ON PURPOSE.
|
|
# Constants uppercase are not documented.
|
|
if name.isupper():
|
|
return True
|
|
# PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
|
|
if (
|
|
name.endswith("PreTrainedModel")
|
|
or name.endswith("Decoder")
|
|
or name.endswith("Encoder")
|
|
or name.endswith("Layer")
|
|
or name.endswith("Embeddings")
|
|
or name.endswith("Attention")
|
|
):
|
|
return True
|
|
# Submodules are not documented.
|
|
if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
|
|
os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
|
|
):
|
|
return True
|
|
# All load functions are not documented.
|
|
if name.startswith("load_tf") or name.startswith("load_pytorch"):
|
|
return True
|
|
# is_xxx_available functions are not documented.
|
|
if name.startswith("is_") and name.endswith("_available"):
|
|
return True
|
|
# Deprecated objects are not documented.
|
|
if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
|
|
return True
|
|
# MMBT model does not really work.
|
|
if name.startswith("MMBT"):
|
|
return True
|
|
if name in SHOULD_HAVE_THEIR_OWN_PAGE:
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_all_objects_are_documented():
|
|
"""Check all models are properly documented."""
|
|
documented_objs = find_all_documented_objects()
|
|
modules = transformers._modules
|
|
objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
|
|
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
|
|
if len(undocumented_objs) > 0:
|
|
raise Exception(
|
|
"The following objects are in the public init so should be documented:\n - "
|
|
+ "\n - ".join(undocumented_objs)
|
|
)
|
|
check_docstrings_are_in_md()
|
|
check_model_type_doc_match()
|
|
|
|
|
|
def check_model_type_doc_match():
|
|
"""Check all doc pages have a corresponding model type."""
|
|
model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
|
|
model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
|
|
|
|
model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
|
|
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
|
|
|
|
errors = []
|
|
for m in model_docs:
|
|
if m not in model_types and m != "auto":
|
|
close_matches = get_close_matches(m, model_types)
|
|
error_message = f"{m} is not a proper model identifier."
|
|
if len(close_matches) > 0:
|
|
close_matches = "/".join(close_matches)
|
|
error_message += f" Did you mean {close_matches}?"
|
|
errors.append(error_message)
|
|
|
|
if len(errors) > 0:
|
|
raise ValueError(
|
|
"Some model doc pages do not match any existing model type:\n"
|
|
+ "\n".join(errors)
|
|
+ "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
|
|
"models/auto/configuration_auto.py."
|
|
)
|
|
|
|
|
|
# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
|
|
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
|
|
# Re pattern to catch things between double backquotes.
|
|
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
|
|
# Re pattern to catch example introduction.
|
|
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)
|
|
|
|
|
|
def is_rst_docstring(docstring: str) -> True:
|
|
"""
|
|
Returns `True` if `docstring` is written in rst.
|
|
"""
|
|
if _re_rst_special_words.search(docstring) is not None:
|
|
return True
|
|
if _re_double_backquotes.search(docstring) is not None:
|
|
return True
|
|
if _re_rst_example.search(docstring) is not None:
|
|
return True
|
|
return False
|
|
|
|
|
|
def check_docstrings_are_in_md():
|
|
"""Check all docstrings are written in md and nor rst."""
|
|
files_with_rst = []
|
|
for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
|
|
with open(file, encoding="utf-8") as f:
|
|
code = f.read()
|
|
docstrings = code.split('"""')
|
|
|
|
for idx, docstring in enumerate(docstrings):
|
|
if idx % 2 == 0 or not is_rst_docstring(docstring):
|
|
continue
|
|
files_with_rst.append(file)
|
|
break
|
|
|
|
if len(files_with_rst) > 0:
|
|
raise ValueError(
|
|
"The following files have docstrings written in rst:\n"
|
|
+ "\n".join([f"- {f}" for f in files_with_rst])
|
|
+ "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
|
|
"(`pip install git+https://github.com/huggingface/doc-builder`)"
|
|
)
|
|
|
|
|
|
def check_deprecated_constant_is_up_to_date():
|
|
"""
|
|
Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
|
|
"""
|
|
deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
|
|
deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]
|
|
|
|
constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
|
|
message = []
|
|
missing_models = sorted(set(deprecated_models) - set(constant_to_check))
|
|
if len(missing_models) != 0:
|
|
missing_models = ", ".join(missing_models)
|
|
message.append(
|
|
"The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
|
|
f"`models/auto/configuration_auto.py`: {missing_models}."
|
|
)
|
|
|
|
extra_models = sorted(set(constant_to_check) - set(deprecated_models))
|
|
if len(extra_models) != 0:
|
|
extra_models = ", ".join(extra_models)
|
|
message.append(
|
|
"The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
|
|
f"remove them from the constant or move to the deprecated folder: {extra_models}."
|
|
)
|
|
|
|
if len(message) > 0:
|
|
raise Exception("\n".join(message))
|
|
|
|
|
|
def check_repo_quality():
|
|
"""Check all models are properly tested and documented."""
|
|
print("Checking all models are included.")
|
|
check_model_list()
|
|
print("Checking all models are public.")
|
|
check_models_are_in_init()
|
|
print("Checking all models are properly tested.")
|
|
check_all_decorator_order()
|
|
check_all_models_are_tested()
|
|
print("Checking all objects are properly documented.")
|
|
check_all_objects_are_documented()
|
|
print("Checking all models are in at least one auto class.")
|
|
check_all_models_are_auto_configured()
|
|
print("Checking all names in auto name mappings are defined.")
|
|
check_all_auto_object_names_being_defined()
|
|
print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
|
|
check_all_auto_mapping_names_in_config_mapping_names()
|
|
print("Checking all auto mappings could be imported.")
|
|
check_all_auto_mappings_importable()
|
|
print("Checking all objects are equally (across frameworks) in the main __init__.")
|
|
check_objects_being_equally_in_main_init()
|
|
print("Checking the DEPRECATED_MODELS constant is up to date.")
|
|
check_deprecated_constant_is_up_to_date()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
check_repo_quality()
|