transformers/utils/check_repo.py

1189 lines
47 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that performs several consistency checks on the repo. This includes:
- checking all models are properly defined in the __init__ of models/
- checking all models are in the main __init__
- checking all models are properly tested
- checking all object in the main __init__ are documented
- checking all models are in at least one auto class
- checking all the auto mapping are properly defined (no typos, importable)
- checking the list of deprecated models is up to date
Use from the root of the repo with (as used in `make repo-consistency`):
```bash
python utils/check_repo.py
```
It has no auto-fix mode.
"""
import inspect
import os
import re
import sys
import types
import warnings
from collections import OrderedDict
from difflib import get_close_matches
from pathlib import Path
from typing import List, Tuple
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.models.auto import get_values
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/en"
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
"AltRobertaModel",
"DPRSpanPredictor",
"UdopStack",
"LongT5Stack",
"RealmBertModel",
"T5Stack",
"MT5Stack",
"UMT5Stack",
"Pop2PianoStack",
"SwitchTransformersStack",
"TFDPRSpanPredictor",
"MaskFormerSwinModel",
"MaskFormerSwinPreTrainedModel",
"BridgeTowerTextModel",
"BridgeTowerVisionModel",
"Kosmos2TextModel",
"Kosmos2TextForCausalLM",
"Kosmos2VisionModel",
"SeamlessM4Tv2TextToUnitModel",
"SeamlessM4Tv2CodeHifiGan",
"SeamlessM4Tv2TextToUnitForConditionalGeneration",
]
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
# models to ignore for not tested
"FuyuForCausalLM", # Not tested fort now
"InstructBlipQFormerModel", # Building part of bigger (tested) model.
"UMT5EncoderModel", # Building part of bigger (tested) model.
"Blip2QFormerModel", # Building part of bigger (tested) model.
"ErnieMForInformationExtraction",
"FastSpeech2ConformerHifiGan", # Already tested by SpeechT5HifiGan (# Copied from)
"FastSpeech2ConformerWithHifiGan", # Built with two smaller (tested) models.
"GraphormerDecoderHead", # Building part of bigger (tested) model.
"JukeboxVQVAE", # Building part of bigger (tested) model.
"JukeboxPrior", # Building part of bigger (tested) model.
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
"SegformerDecodeHead", # Building part of bigger (tested) model.
"MgpstrModel", # Building part of bigger (tested) model.
"BertLMHeadModel", # Needs to be setup as decoder.
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
"RealmBertModel", # Building part of bigger (tested) model.
"RealmReader", # Not regular model.
"RealmScorer", # Not regular model.
"RealmForOpenQA", # Not regular model.
"ReformerForMaskedLM", # Needs to be setup as decoder.
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
"TFRobertaForMultipleChoice", # TODO: fix
"TFRobertaPreLayerNormForMultipleChoice", # TODO: fix
"SeparableConv1D", # Building part of bigger (tested) model.
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
"OPTDecoderWrapper",
"TFSegformerDecodeHead", # Not a regular model.
"AltRobertaModel", # Building part of bigger (tested) model.
"BlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
"TFBlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
"BridgeTowerTextModel", # No need to test it as it is tested by BridgeTowerModel model.
"BridgeTowerVisionModel", # No need to test it as it is tested by BridgeTowerModel model.
"BarkCausalModel", # Building part of bigger (tested) model.
"BarkModel", # Does not have a forward signature - generation tested with integration tests.
"SeamlessM4TTextToUnitModel", # Building part of bigger (tested) model.
"SeamlessM4TCodeHifiGan", # Building part of bigger (tested) model.
"SeamlessM4TTextToUnitForConditionalGeneration", # Building part of bigger (tested) model.
]
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
"models/decision_transformer/test_modeling_decision_transformer.py",
"models/camembert/test_modeling_camembert.py",
"models/mt5/test_modeling_flax_mt5.py",
"models/mbart/test_modeling_mbart.py",
"models/mt5/test_modeling_mt5.py",
"models/pegasus/test_modeling_pegasus.py",
"models/camembert/test_modeling_tf_camembert.py",
"models/mt5/test_modeling_tf_mt5.py",
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
"models/xlm_roberta/test_modeling_xlm_roberta.py",
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
"models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
"models/decision_transformer/test_modeling_decision_transformer.py",
"models/bark/test_modeling_bark.py",
]
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
# models to ignore for model xxx mapping
"AlignTextModel",
"AlignVisionModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
"Blip2ForConditionalGeneration",
"Blip2QFormerModel",
"Blip2VisionModel",
"ErnieMForInformationExtraction",
"FastSpeech2ConformerHifiGan",
"FastSpeech2ConformerWithHifiGan",
"GitVisionModel",
"GraphormerModel",
"GraphormerForGraphClassification",
"BlipForConditionalGeneration",
"BlipForImageTextRetrieval",
"BlipForQuestionAnswering",
"BlipVisionModel",
"BlipTextLMHeadModel",
"BlipTextModel",
"BrosSpadeEEForTokenClassification",
"BrosSpadeELForTokenClassification",
"TFBlipForConditionalGeneration",
"TFBlipForImageTextRetrieval",
"TFBlipForQuestionAnswering",
"TFBlipVisionModel",
"TFBlipTextLMHeadModel",
"TFBlipTextModel",
"Swin2SRForImageSuperResolution",
"BridgeTowerForImageAndTextRetrieval",
"BridgeTowerForMaskedLM",
"BridgeTowerForContrastiveLearning",
"CLIPSegForImageSegmentation",
"CLIPSegVisionModel",
"CLIPSegTextModel",
"EsmForProteinFolding",
"GPTSanJapaneseModel",
"TimeSeriesTransformerForPrediction",
"InformerForPrediction",
"AutoformerForPrediction",
"PatchTSTForPretraining",
"PatchTSTForPrediction",
"JukeboxVQVAE",
"JukeboxPrior",
"SamModel",
"DPTForDepthEstimation",
"DecisionTransformerGPT2Model",
"GLPNForDepthEstimation",
"ViltForImagesAndTextClassification",
"ViltForImageAndTextRetrieval",
"ViltForTokenClassification",
"ViltForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"SegformerDecodeHead",
"TFSegformerDecodeHead",
"FlaxBeitForMaskedImageModeling",
"BeitForMaskedImageModeling",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModelWithProjection",
"ClvpForCausalLM",
"ClvpModel",
"GroupViTTextModel",
"GroupViTVisionModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextModelWithProjection",
"FlaxCLIPVisionModel",
"FlaxWav2Vec2ForCTC",
"DetrForSegmentation",
"Pix2StructVisionModel",
"Pix2StructTextModel",
"Pix2StructForConditionalGeneration",
"ConditionalDetrForSegmentation",
"DPRReader",
"FlaubertForQuestionAnswering",
"FlavaImageCodebook",
"FlavaTextModel",
"FlavaImageModel",
"FlavaMultimodalModel",
"GPT2DoubleHeadsModel",
"GPTSw3DoubleHeadsModel",
"InstructBlipVisionModel",
"InstructBlipQFormerModel",
"LayoutLMForQuestionAnswering",
"LukeForMaskedLM",
"LukeForEntityClassification",
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"MgpstrModel",
"OpenAIGPTDoubleHeadsModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"Owlv2TextModel",
"Owlv2VisionModel",
"OwlViTForObjectDetection",
"PatchTSMixerForPrediction",
"PatchTSMixerForPretraining",
"RagModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
"RealmEmbedder",
"RealmForOpenQA",
"RealmScorer",
"RealmReader",
"TFDPRReader",
"TFGPT2DoubleHeadsModel",
"TFLayoutLMForQuestionAnswering",
"TFOpenAIGPTDoubleHeadsModel",
"TFRagModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
"Wav2Vec2ForCTC",
"HubertForCTC",
"SEWForCTC",
"SEWDForCTC",
"XLMForQuestionAnswering",
"XLNetForQuestionAnswering",
"SeparableConv1D",
"VisualBertForRegionToPhraseAlignment",
"VisualBertForVisualReasoning",
"VisualBertForQuestionAnswering",
"VisualBertForMultipleChoice",
"TFWav2Vec2ForCTC",
"TFHubertForCTC",
"XCLIPVisionModel",
"XCLIPTextModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
"AltRobertaModel",
"TvltForAudioVisualClassification",
"BarkCausalModel",
"BarkCoarseModel",
"BarkFineModel",
"BarkSemanticModel",
"MusicgenMelodyModel",
"MusicgenModel",
"MusicgenForConditionalGeneration",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5HifiGan",
"VitMatteForImageMatting",
"SeamlessM4TTextToUnitModel",
"SeamlessM4TTextToUnitForConditionalGeneration",
"SeamlessM4TCodeHifiGan",
"SeamlessM4TForSpeechToSpeech", # no auto class for speech-to-speech
"TvpForVideoGrounding",
"UdopForConditionalGeneration",
"SeamlessM4Tv2NARTextToUnitModel",
"SeamlessM4Tv2NARTextToUnitForConditionalGeneration",
"SeamlessM4Tv2CodeHifiGan",
"SeamlessM4Tv2ForSpeechToSpeech", # no auto class for speech-to-speech
"SegGptForImageSegmentation",
"SiglipVisionModel",
"SiglipTextModel",
]
# DO NOT edit this list!
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
"FlaxBertLayer",
"FlaxBigBirdLayer",
"FlaxRoFormerLayer",
"TFBertLayer",
"TFLxmertEncoder",
"TFLxmertXLayer",
"TFMPNetLayer",
"TFMobileBertLayer",
"TFSegformerLayer",
"TFViTMAELayer",
]
# Update this list for models that have multiple model types for the same model doc.
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
[
("data2vec-text", "data2vec"),
("data2vec-audio", "data2vec"),
("data2vec-vision", "data2vec"),
("donut-swin", "donut"),
]
)
# This is to make sure the transformers module imported is the one in the repo.
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
def check_missing_backends():
"""
Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
that's not the case but only throw a warning for users running this.
"""
missing_backends = []
if not is_torch_available():
missing_backends.append("PyTorch")
if not is_tf_available():
missing_backends.append("TensorFlow")
if not is_flax_available():
missing_backends.append("Flax")
if len(missing_backends) > 0:
missing = ", ".join(missing_backends)
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
raise Exception(
"Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
f"Transformers repo, the following are missing: {missing}."
)
else:
warnings.warn(
"Full repo consistency checks require all backends to be installed (with `pip install -e '.[dev]'` in the "
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
"didn't make any change in one of those backends modeling files, you should probably execute the "
"command above to be on the safe side."
)
def check_model_list():
"""
Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
"""
# Get the models from the directory structure of `src/transformers/models/`
models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
_models = []
for model in os.listdir(models_dir):
if model == "deprecated":
continue
model_dir = os.path.join(models_dir, model)
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
_models.append(model)
# Get the models in the submodule `transformers.models`
models = [model for model in dir(transformers.models) if not model.startswith("__")]
missing_models = sorted(set(_models).difference(models))
if missing_models:
raise Exception(
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
)
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules() -> List[str]:
"""Get all the model modules inside the transformers library (except deprecated models)."""
_ignore_modules = [
"modeling_auto",
"modeling_encoder_decoder",
"modeling_marian",
"modeling_mmbt",
"modeling_outputs",
"modeling_retribert",
"modeling_utils",
"modeling_flax_auto",
"modeling_flax_encoder_decoder",
"modeling_flax_utils",
"modeling_speech_encoder_decoder",
"modeling_flax_speech_encoder_decoder",
"modeling_flax_vision_encoder_decoder",
"modeling_timm_backbone",
"modeling_tf_auto",
"modeling_tf_encoder_decoder",
"modeling_tf_outputs",
"modeling_tf_pytorch_utils",
"modeling_tf_utils",
"modeling_tf_vision_encoder_decoder",
"modeling_vision_encoder_decoder",
]
modules = []
for model in dir(transformers.models):
# There are some magic dunder attributes in the dir, we ignore them
if model == "deprecated" or model.startswith("__"):
continue
model_module = getattr(transformers.models, model)
for submodule in dir(model_module):
if submodule.startswith("modeling") and submodule not in _ignore_modules:
modeling_module = getattr(model_module, submodule)
if inspect.ismodule(modeling_module):
modules.append(modeling_module)
return modules
def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
"""
Get the objects in a module that are models.
Args:
module (`types.ModuleType`):
The module from which we are extracting models.
include_pretrained (`bool`, *optional*, defaults to `False`):
Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.
Returns:
List[Tuple[str, type]]: List of models as tuples (class name, actual class).
"""
models = []
model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
for attr_name in dir(module):
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
continue
attr = getattr(module, attr_name)
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
models.append((attr_name, attr))
return models
def is_building_block(model: str) -> bool:
"""
Returns `True` if a model is a building block part of a bigger model.
"""
if model.endswith("Wrapper"):
return True
if model.endswith("Encoder"):
return True
if model.endswith("Decoder"):
return True
if model.endswith("Prenet"):
return True
def is_a_private_model(model: str) -> bool:
"""Returns `True` if the model should not be in the main init."""
if model in PRIVATE_MODELS:
return True
return is_building_block(model)
def check_models_are_in_init():
"""Checks all models defined in the library are in the main init."""
models_not_in_init = []
dir_transformers = dir(transformers)
for module in get_model_modules():
models_not_in_init += [
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
]
# Remove private models
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
if len(models_not_in_init) > 0:
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files() -> List[str]:
"""
Get the model test files.
Returns:
`List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
defined in this script). They will be considered as paths relative to `tests`. A caller has to use
`os.path.join(PATH_TO_TESTS, ...)` to access the files.
"""
_ignore_files = [
"test_modeling_common",
"test_modeling_encoder_decoder",
"test_modeling_flax_encoder_decoder",
"test_modeling_flax_speech_encoder_decoder",
"test_modeling_marian",
"test_modeling_tf_common",
"test_modeling_tf_encoder_decoder",
]
test_files = []
model_test_root = os.path.join(PATH_TO_TESTS, "models")
model_test_dirs = []
for x in os.listdir(model_test_root):
x = os.path.join(model_test_root, x)
if os.path.isdir(x):
model_test_dirs.append(x)
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
for file_or_dir in os.listdir(target_dir):
path = os.path.join(target_dir, file_or_dir)
if os.path.isfile(path):
filename = os.path.split(path)[-1]
if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
file = os.path.join(*path.split(os.sep)[1:])
test_files.append(file)
return test_files
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file: str) -> List[str]:
"""
Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
the common test class.
Args:
test_file (`str`): The path to the test file to check
Returns:
`List[str]`: The list of models tested in that file.
"""
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
content = f.read()
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
# Check with one less parenthesis as well
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
if len(all_models) > 0:
model_tested = []
for entry in all_models:
for line in entry.split(","):
name = line.strip()
if len(name) > 0:
model_tested.append(name)
return model_tested
def should_be_tested(model_name: str) -> bool:
"""
Whether or not a model should be tested.
"""
if model_name in IGNORE_NON_TESTED:
return False
return not is_building_block(model_name)
def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
"""Check models defined in a module are all tested in a given file.
Args:
module (`types.ModuleType`): The module in which we get the models.
test_file (`str`): The path to the file where the module is tested.
Returns:
`List[str]`: The list of error messages corresponding to models not tested.
"""
# XxxPreTrainedModel are not tested
defined_models = get_models(module)
tested_models = find_tested_models(test_file)
if tested_models is None:
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
return
return [
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
+ "`utils/check_repo.py`."
]
failures = []
for model_name, _ in defined_models:
if model_name not in tested_models and should_be_tested(model_name):
failures.append(
f"{model_name} is defined in {module.__name__} but is not tested in "
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
+ "in the file `utils/check_repo.py`."
)
return failures
def check_all_models_are_tested():
"""Check all models are properly tested."""
modules = get_model_modules()
test_files = get_model_test_files()
failures = []
for module in modules:
# Matches a module to its test file.
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
if len(test_file) == 0:
failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
elif len(test_file) > 1:
failures.append(f"{module.__name__} has several test files: {test_file}.")
else:
test_file = test_file[0]
new_failures = check_models_are_tested(module, test_file)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def get_all_auto_configured_models() -> List[str]:
"""Return the list of all models in at least one auto class."""
result = set() # To avoid duplicates we concatenate all model classes in a set.
if is_torch_available():
for attr_name in dir(transformers.models.auto.modeling_auto):
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
if is_tf_available():
for attr_name in dir(transformers.models.auto.modeling_tf_auto):
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
if is_flax_available():
for attr_name in dir(transformers.models.auto.modeling_flax_auto):
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
return list(result)
def ignore_unautoclassed(model_name: str) -> bool:
"""Rules to determine if a model should be in an auto class."""
# Special white list
if model_name in IGNORE_NON_AUTO_CONFIGURED:
return True
# Encoder and Decoder should be ignored
if "Encoder" in model_name or "Decoder" in model_name:
return True
return False
def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
"""
Check models defined in module are each in an auto class.
Args:
module (`types.ModuleType`):
The module in which we get the models.
all_auto_models (`List[str]`):
The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).
Returns:
`List[str]`: The list of error messages corresponding to models not tested.
"""
defined_models = get_models(module)
failures = []
for model_name, _ in defined_models:
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
failures.append(
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
"`utils/check_repo.py`."
)
return failures
def check_all_models_are_auto_configured():
"""Check all models are each in an auto class."""
# This is where we need to check we have all backends or the check is incomplete.
check_missing_backends()
modules = get_model_modules()
all_auto_models = get_all_auto_configured_models()
failures = []
for module in modules:
new_failures = check_models_are_auto_configured(module, all_auto_models)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def check_all_auto_object_names_being_defined():
"""Check all names defined in auto (name) mappings exist in the library."""
# This is where we need to check we have all backends or the check is incomplete.
check_missing_backends()
failures = []
mappings_to_check = {
"TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
"IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
"FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
"PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
}
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
module = getattr(transformers.models.auto, module_name, None)
if module is None:
continue
# all mappings in a single auto modeling file
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
for name, mapping in mappings_to_check.items():
for _, class_names in mapping.items():
if not isinstance(class_names, tuple):
class_names = (class_names,)
for class_name in class_names:
if class_name is None:
continue
# dummy object is accepted
if not hasattr(transformers, class_name):
# If the class name is in a model name mapping, let's not check if there is a definition in any modeling
# module, if it's a private model defined in this file.
if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
continue
if name.endswith("MODEL_FOR_IMAGE_MAPPING_NAMES") and is_a_private_model(class_name):
continue
failures.append(
f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
)
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def check_all_auto_mapping_names_in_config_mapping_names():
"""Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
# This is where we need to check we have all backends or the check is incomplete.
check_missing_backends()
failures = []
# `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
mappings_to_check = {
"IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
"FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
"PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
}
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
module = getattr(transformers.models.auto, module_name, None)
if module is None:
continue
# all mappings in a single auto modeling file
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
for name, mapping in mappings_to_check.items():
for model_type in mapping:
if model_type not in CONFIG_MAPPING_NAMES:
failures.append(
f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
"`CONFIG_MAPPING_NAMES`."
)
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def check_all_auto_mappings_importable():
"""Check all auto mappings can be imported."""
# This is where we need to check we have all backends or the check is incomplete.
check_missing_backends()
failures = []
mappings_to_check = {}
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
module = getattr(transformers.models.auto, module_name, None)
if module is None:
continue
# all mappings in a single auto modeling file
mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
mappings_to_check.update({name: getattr(module, name) for name in mapping_names})
for name in mappings_to_check:
name = name.replace("_MAPPING_NAMES", "_MAPPING")
if not hasattr(transformers, name):
failures.append(f"`{name}`")
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def check_objects_being_equally_in_main_init():
"""
Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
"""
attrs = dir(transformers)
failures = []
for attr in attrs:
obj = getattr(transformers, attr)
if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
continue
module_path = obj.__module__
module_name = module_path.split(".")[-1]
module_dir = ".".join(module_path.split(".")[:-1])
if (
module_name.startswith("modeling_")
and not module_name.startswith("modeling_tf_")
and not module_name.startswith("modeling_flax_")
):
parent_module = sys.modules[module_dir]
frameworks = []
if is_tf_available():
frameworks.append("TF")
if is_flax_available():
frameworks.append("Flax")
for framework in frameworks:
other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
other_module = getattr(parent_module, other_module_name)
if hasattr(other_module, f"{framework}{attr}"):
if not hasattr(transformers, f"{framework}{attr}"):
if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
failures.append(f"{framework}{attr}")
if hasattr(other_module, f"{framework}_{attr}"):
if not hasattr(transformers, f"{framework}_{attr}"):
if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
failures.append(f"{framework}_{attr}")
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
def check_decorator_order(filename: str) -> List[int]:
"""
Check that in a given test file, the slow decorator is always last.
Args:
filename (`str`): The path to a test file to check.
Returns:
`List[int]`: The list of failures as a list of indices where there are problems.
"""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
decorator_before = None
errors = []
for i, line in enumerate(lines):
search = _re_decorator.search(line)
if search is not None:
decorator_name = search.groups()[0]
if decorator_before is not None and decorator_name.startswith("parameterized"):
errors.append(i)
decorator_before = decorator_name
elif decorator_before is not None:
decorator_before = None
return errors
def check_all_decorator_order():
"""Check that in all test files, the slow decorator is always last."""
errors = []
for fname in os.listdir(PATH_TO_TESTS):
if fname.endswith(".py"):
filename = os.path.join(PATH_TO_TESTS, fname)
new_errors = check_decorator_order(filename)
errors += [f"- {filename}, line {i}" for i in new_errors]
if len(errors) > 0:
msg = "\n".join(errors)
raise ValueError(
"The parameterized decorator (and its variants) should always be first, but this is not the case in the"
f" following files:\n{msg}"
)
def find_all_documented_objects() -> List[str]:
"""
Parse the content of all doc files to detect which classes and functions it documents.
Returns:
`List[str]`: The list of all object names being documented.
"""
documented_obj = []
for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
return documented_obj
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
"AutoModelWithLMHead",
"BartPretrainedModel",
"DataCollator",
"DataCollatorForSOP",
"GlueDataset",
"GlueDataTrainingArguments",
"LineByLineTextDataset",
"LineByLineWithRefDataset",
"LineByLineWithSOPTextDataset",
"NerPipeline",
"PretrainedBartModel",
"PretrainedFSMTModel",
"SingleSentenceClassificationProcessor",
"SquadDataTrainingArguments",
"SquadDataset",
"SquadExample",
"SquadFeatures",
"SquadV1Processor",
"SquadV2Processor",
"TFAutoModelWithLMHead",
"TFBartPretrainedModel",
"TextDataset",
"TextDatasetForNextSentencePrediction",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2Tokenizer",
"glue_compute_metrics",
"glue_convert_examples_to_features",
"glue_output_modes",
"glue_processors",
"glue_tasks_num_labels",
"squad_convert_examples_to_features",
"xnli_compute_metrics",
"xnli_output_modes",
"xnli_processors",
"xnli_tasks_num_labels",
"TFTrainingArguments",
]
# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
"AddedToken", # This is a tokenizers class.
"BasicTokenizer", # Internal, should never have been in the main init.
"CharacterTokenizer", # Internal, should never have been in the main init.
"DPRPretrainedReader", # Like an Encoder.
"DummyObject", # Just picked by mistake sometimes.
"MecabTokenizer", # Internal, should never have been in the main init.
"ModelCard", # Internal type.
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
"TFDPRPretrainedReader", # Like an Encoder.
"TransfoXLCorpus", # Internal type.
"WordpieceTokenizer", # Internal, should never have been in the main init.
"absl", # External module
"add_end_docstrings", # Internal, should never have been in the main init.
"add_start_docstrings", # Internal, should never have been in the main init.
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
"logger", # Internal logger
"logging", # External module
"requires_backends", # Internal function
"AltRobertaModel", # Internal module
]
# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
# Benchmarks
"PyTorchBenchmark",
"PyTorchBenchmarkArguments",
"TensorFlowBenchmark",
"TensorFlowBenchmarkArguments",
"AutoBackbone",
"BeitBackbone",
"BitBackbone",
"ConvNextBackbone",
"ConvNextV2Backbone",
"DinatBackbone",
"Dinov2Backbone",
"FocalNetBackbone",
"MaskFormerSwinBackbone",
"MaskFormerSwinConfig",
"MaskFormerSwinModel",
"NatBackbone",
"PvtV2Backbone",
"ResNetBackbone",
"SwinBackbone",
"Swinv2Backbone",
"TimmBackbone",
"TimmBackboneConfig",
"VitDetBackbone",
]
def ignore_undocumented(name: str) -> bool:
"""Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
# NOT DOCUMENTED ON PURPOSE.
# Constants uppercase are not documented.
if name.isupper():
return True
# PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
if (
name.endswith("PreTrainedModel")
or name.endswith("Decoder")
or name.endswith("Encoder")
or name.endswith("Layer")
or name.endswith("Embeddings")
or name.endswith("Attention")
):
return True
# Submodules are not documented.
if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
):
return True
# All load functions are not documented.
if name.startswith("load_tf") or name.startswith("load_pytorch"):
return True
# is_xxx_available functions are not documented.
if name.startswith("is_") and name.endswith("_available"):
return True
# Deprecated objects are not documented.
if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
return True
# MMBT model does not really work.
if name.startswith("MMBT"):
return True
if name in SHOULD_HAVE_THEIR_OWN_PAGE:
return True
return False
def check_all_objects_are_documented():
"""Check all models are properly documented."""
documented_objs = find_all_documented_objects()
modules = transformers._modules
objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
if len(undocumented_objs) > 0:
raise Exception(
"The following objects are in the public init so should be documented:\n - "
+ "\n - ".join(undocumented_objs)
)
check_docstrings_are_in_md()
check_model_type_doc_match()
def check_model_type_doc_match():
"""Check all doc pages have a corresponding model type."""
model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
errors = []
for m in model_docs:
if m not in model_types and m != "auto":
close_matches = get_close_matches(m, model_types)
error_message = f"{m} is not a proper model identifier."
if len(close_matches) > 0:
close_matches = "/".join(close_matches)
error_message += f" Did you mean {close_matches}?"
errors.append(error_message)
if len(errors) > 0:
raise ValueError(
"Some model doc pages do not match any existing model type:\n"
+ "\n".join(errors)
+ "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
"models/auto/configuration_auto.py."
)
# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)
def is_rst_docstring(docstring: str) -> True:
"""
Returns `True` if `docstring` is written in rst.
"""
if _re_rst_special_words.search(docstring) is not None:
return True
if _re_double_backquotes.search(docstring) is not None:
return True
if _re_rst_example.search(docstring) is not None:
return True
return False
def check_docstrings_are_in_md():
"""Check all docstrings are written in md and nor rst."""
files_with_rst = []
for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
with open(file, encoding="utf-8") as f:
code = f.read()
docstrings = code.split('"""')
for idx, docstring in enumerate(docstrings):
if idx % 2 == 0 or not is_rst_docstring(docstring):
continue
files_with_rst.append(file)
break
if len(files_with_rst) > 0:
raise ValueError(
"The following files have docstrings written in rst:\n"
+ "\n".join([f"- {f}" for f in files_with_rst])
+ "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
"(`pip install git+https://github.com/huggingface/doc-builder`)"
)
def check_deprecated_constant_is_up_to_date():
"""
Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
"""
deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]
constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
message = []
missing_models = sorted(set(deprecated_models) - set(constant_to_check))
if len(missing_models) != 0:
missing_models = ", ".join(missing_models)
message.append(
"The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
f"`models/auto/configuration_auto.py`: {missing_models}."
)
extra_models = sorted(set(constant_to_check) - set(deprecated_models))
if len(extra_models) != 0:
extra_models = ", ".join(extra_models)
message.append(
"The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
f"remove them from the constant or move to the deprecated folder: {extra_models}."
)
if len(message) > 0:
raise Exception("\n".join(message))
def check_repo_quality():
"""Check all models are properly tested and documented."""
print("Checking all models are included.")
check_model_list()
print("Checking all models are public.")
check_models_are_in_init()
print("Checking all models are properly tested.")
check_all_decorator_order()
check_all_models_are_tested()
print("Checking all objects are properly documented.")
check_all_objects_are_documented()
print("Checking all models are in at least one auto class.")
check_all_models_are_auto_configured()
print("Checking all names in auto name mappings are defined.")
check_all_auto_object_names_being_defined()
print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
check_all_auto_mapping_names_in_config_mapping_names()
print("Checking all auto mappings could be imported.")
check_all_auto_mappings_importable()
print("Checking all objects are equally (across frameworks) in the main __init__.")
check_objects_being_equally_in_main_init()
print("Checking the DEPRECATED_MODELS constant is up to date.")
check_deprecated_constant_is_up_to_date()
if __name__ == "__main__":
check_repo_quality()