166 lines
5.4 KiB
Python
Executable File
166 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Usage:
|
|
# ./gen-card-facebook-wmt19.py
|
|
|
|
import os
|
|
from pathlib import Path
|
|
|
|
|
|
def write_model_card(model_card_dir, src_lang, tgt_lang):
|
|
|
|
texts = {
|
|
"en": "Machine learning is great, isn't it?",
|
|
"ru": "Машинное обучение - это здорово, не так ли?",
|
|
"de": "Maschinelles Lernen ist großartig, oder?",
|
|
}
|
|
|
|
# BLUE scores as follows:
|
|
# "pair": [fairseq, transformers]
|
|
scores = {
|
|
"ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"],
|
|
"en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"],
|
|
"en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"],
|
|
"de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"],
|
|
}
|
|
pair = f"{src_lang}-{tgt_lang}"
|
|
|
|
readme = f"""
|
|
---
|
|
language:
|
|
- {src_lang}
|
|
- {tgt_lang}
|
|
thumbnail:
|
|
tags:
|
|
- translation
|
|
- wmt19
|
|
- facebook
|
|
license: apache-2.0
|
|
datasets:
|
|
- wmt19
|
|
metrics:
|
|
- bleu
|
|
---
|
|
|
|
# FSMT
|
|
|
|
## Model description
|
|
|
|
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
|
|
|
|
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
|
|
|
|
The abbreviation FSMT stands for FairSeqMachineTranslation
|
|
|
|
All four models are available:
|
|
|
|
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
|
|
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
|
|
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
|
|
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
|
|
|
|
## Intended uses & limitations
|
|
|
|
#### How to use
|
|
|
|
```python
|
|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
|
mname = "facebook/wmt19-{src_lang}-{tgt_lang}"
|
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
|
|
|
input = "{texts[src_lang]}"
|
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
|
outputs = model.generate(input_ids)
|
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
print(decoded) # {texts[tgt_lang]}
|
|
|
|
```
|
|
|
|
#### Limitations and bias
|
|
|
|
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
|
|
|
|
## Training data
|
|
|
|
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
|
|
|
|
## Eval results
|
|
|
|
pair | fairseq | transformers
|
|
-------|---------|----------
|
|
{pair} | {scores[pair][0]} | {scores[pair][1]}
|
|
|
|
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
|
|
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
|
|
- re-ranking
|
|
|
|
The score was calculated using this code:
|
|
|
|
```bash
|
|
git clone https://github.com/huggingface/transformers
|
|
cd transformers
|
|
export PAIR={pair}
|
|
export DATA_DIR=data/$PAIR
|
|
export SAVE_DIR=data/$PAIR
|
|
export BS=8
|
|
export NUM_BEAMS=15
|
|
mkdir -p $DATA_DIR
|
|
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
|
|
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
|
|
echo $PAIR
|
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
|
```
|
|
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
|
|
|
|
## Data Sources
|
|
|
|
- [training, etc.](http://www.statmt.org/wmt19/)
|
|
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
|
|
|
|
|
|
### BibTeX entry and citation info
|
|
|
|
```bibtex
|
|
@inproceedings{{...,
|
|
year={{2020}},
|
|
title={{Facebook FAIR's WMT19 News Translation Task Submission}},
|
|
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
|
|
booktitle={{Proc. of WMT}},
|
|
}}
|
|
```
|
|
|
|
|
|
## TODO
|
|
|
|
- port model ensemble (fairseq uses 4 model checkpoints)
|
|
|
|
"""
|
|
os.makedirs(model_card_dir, exist_ok=True)
|
|
path = os.path.join(model_card_dir, "README.md")
|
|
print(f"Generating {path}")
|
|
with open(path, "w", encoding="utf-8") as f:
|
|
f.write(readme)
|
|
|
|
# make sure we are under the root of the project
|
|
repo_dir = Path(__file__).resolve().parent.parent.parent
|
|
model_cards_dir = repo_dir / "model_cards"
|
|
|
|
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
|
|
base, src_lang, tgt_lang = model_name.split("-")
|
|
model_card_dir = model_cards_dir / "facebook" / model_name
|
|
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
|