93 lines
2.9 KiB
Python
Executable File
93 lines
2.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
#
|
|
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
|
|
# many nodes) can talk to each other via nccl and allocate gpu memory.
|
|
#
|
|
# To run first adjust the number of processes and nodes:
|
|
#
|
|
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
|
|
#
|
|
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
|
|
#
|
|
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
|
|
#
|
|
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
|
|
#
|
|
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
|
|
#
|
|
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
|
|
#
|
|
# which should tell you what's going on behind the scenes.
|
|
#
|
|
#
|
|
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
|
|
# runs on 2 nodes of 4 gpus per node:
|
|
#
|
|
# #SBATCH --job-name=test-nodes # name
|
|
# #SBATCH --nodes=2 # nodes
|
|
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
|
|
# #SBATCH --cpus-per-task=10 # number of cores per tasks
|
|
# #SBATCH --gres=gpu:4 # number of gpus
|
|
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
|
|
# #SBATCH --output=%x-%j.out # output file name
|
|
#
|
|
# GPUS_PER_NODE=4
|
|
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
|
# MASTER_PORT=6000
|
|
#
|
|
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
|
|
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
|
|
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
|
|
# torch-distributed-gpu-test.py'
|
|
#
|
|
|
|
import fcntl
|
|
import os
|
|
import socket
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
|
|
|
|
def printflock(*msgs):
|
|
"""solves multi-process interleaved print problem"""
|
|
with open(__file__, "r") as fh:
|
|
fcntl.flock(fh, fcntl.LOCK_EX)
|
|
try:
|
|
print(*msgs)
|
|
finally:
|
|
fcntl.flock(fh, fcntl.LOCK_UN)
|
|
|
|
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
torch.cuda.set_device(local_rank)
|
|
device = torch.device("cuda", local_rank)
|
|
hostname = socket.gethostname()
|
|
|
|
gpu = f"[{hostname}-{local_rank}]"
|
|
|
|
try:
|
|
# test distributed
|
|
dist.init_process_group("nccl")
|
|
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
|
|
dist.barrier()
|
|
|
|
# test cuda is available and can allocate memory
|
|
torch.cuda.is_available()
|
|
torch.ones(1).cuda(local_rank)
|
|
|
|
# global rank
|
|
rank = dist.get_rank()
|
|
world_size = dist.get_world_size()
|
|
|
|
printflock(f"{gpu} is OK (global rank: {rank}/{world_size})")
|
|
|
|
dist.barrier()
|
|
if rank == 0:
|
|
printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}")
|
|
|
|
except Exception:
|
|
printflock(f"{gpu} is broken")
|
|
raise
|