326 lines
12 KiB
Python
326 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Fine-tuning the library models for named entity recognition on CoNLL-2003."""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from importlib import import_module
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
|
|
from torch import nn
|
|
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForTokenClassification,
|
|
AutoTokenizer,
|
|
DataCollatorWithPadding,
|
|
EvalPrediction,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import is_main_process
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
task_type: Optional[str] = field(
|
|
default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
|
|
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
|
|
# or just modify its tokenizer_config.json.
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
data_dir: str = field(
|
|
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
|
|
)
|
|
labels: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."},
|
|
)
|
|
max_seq_length: int = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
|
|
" --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
module = import_module("tasks")
|
|
try:
|
|
token_classification_task_clazz = getattr(module, model_args.task_type)
|
|
token_classification_task: TokenClassificationTask = token_classification_task_clazz()
|
|
except AttributeError:
|
|
raise ValueError(
|
|
f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
|
|
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
training_args.local_rank,
|
|
training_args.device,
|
|
training_args.n_gpu,
|
|
bool(training_args.local_rank != -1),
|
|
training_args.fp16,
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed
|
|
set_seed(training_args.seed)
|
|
|
|
# Prepare CONLL-2003 task
|
|
labels = token_classification_task.get_labels(data_args.labels)
|
|
label_map: Dict[int, str] = dict(enumerate(labels))
|
|
num_labels = len(labels)
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
id2label=label_map,
|
|
label2id={label: i for i, label in enumerate(labels)},
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast,
|
|
)
|
|
model = AutoModelForTokenClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
# Get datasets
|
|
train_dataset = (
|
|
TokenClassificationDataset(
|
|
token_classification_task=token_classification_task,
|
|
data_dir=data_args.data_dir,
|
|
tokenizer=tokenizer,
|
|
labels=labels,
|
|
model_type=config.model_type,
|
|
max_seq_length=data_args.max_seq_length,
|
|
overwrite_cache=data_args.overwrite_cache,
|
|
mode=Split.train,
|
|
)
|
|
if training_args.do_train
|
|
else None
|
|
)
|
|
eval_dataset = (
|
|
TokenClassificationDataset(
|
|
token_classification_task=token_classification_task,
|
|
data_dir=data_args.data_dir,
|
|
tokenizer=tokenizer,
|
|
labels=labels,
|
|
model_type=config.model_type,
|
|
max_seq_length=data_args.max_seq_length,
|
|
overwrite_cache=data_args.overwrite_cache,
|
|
mode=Split.dev,
|
|
)
|
|
if training_args.do_eval
|
|
else None
|
|
)
|
|
|
|
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
|
|
preds = np.argmax(predictions, axis=2)
|
|
|
|
batch_size, seq_len = preds.shape
|
|
|
|
out_label_list = [[] for _ in range(batch_size)]
|
|
preds_list = [[] for _ in range(batch_size)]
|
|
|
|
for i in range(batch_size):
|
|
for j in range(seq_len):
|
|
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
|
|
out_label_list[i].append(label_map[label_ids[i][j]])
|
|
preds_list[i].append(label_map[preds[i][j]])
|
|
|
|
return preds_list, out_label_list
|
|
|
|
def compute_metrics(p: EvalPrediction) -> Dict:
|
|
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
|
|
return {
|
|
"accuracy_score": accuracy_score(out_label_list, preds_list),
|
|
"precision": precision_score(out_label_list, preds_list),
|
|
"recall": recall_score(out_label_list, preds_list),
|
|
"f1": f1_score(out_label_list, preds_list),
|
|
}
|
|
|
|
# Data collator
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
compute_metrics=compute_metrics,
|
|
data_collator=data_collator,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
trainer.train(
|
|
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
|
|
)
|
|
trainer.save_model()
|
|
# For convenience, we also re-save the tokenizer to the same directory,
|
|
# so that you can share your model easily on huggingface.co/models =)
|
|
if trainer.is_world_process_zero():
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
result = trainer.evaluate()
|
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key, value in result.items():
|
|
logger.info(" %s = %s", key, value)
|
|
writer.write("%s = %s\n" % (key, value))
|
|
|
|
results.update(result)
|
|
|
|
# Predict
|
|
if training_args.do_predict:
|
|
test_dataset = TokenClassificationDataset(
|
|
token_classification_task=token_classification_task,
|
|
data_dir=data_args.data_dir,
|
|
tokenizer=tokenizer,
|
|
labels=labels,
|
|
model_type=config.model_type,
|
|
max_seq_length=data_args.max_seq_length,
|
|
overwrite_cache=data_args.overwrite_cache,
|
|
mode=Split.test,
|
|
)
|
|
|
|
predictions, label_ids, metrics = trainer.predict(test_dataset)
|
|
preds_list, _ = align_predictions(predictions, label_ids)
|
|
|
|
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_test_results_file, "w") as writer:
|
|
for key, value in metrics.items():
|
|
logger.info(" %s = %s", key, value)
|
|
writer.write("%s = %s\n" % (key, value))
|
|
|
|
# Save predictions
|
|
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_test_predictions_file, "w") as writer:
|
|
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
|
|
token_classification_task.write_predictions_to_file(writer, f, preds_list)
|
|
|
|
return results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|