324 lines
10 KiB
Python
324 lines
10 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Script for training a masked language model on TPU."""
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import re
|
|
|
|
import tensorflow as tf
|
|
from packaging.version import parse
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
DataCollatorForLanguageModeling,
|
|
PushToHubCallback,
|
|
TFAutoModelForMaskedLM,
|
|
create_optimizer,
|
|
)
|
|
|
|
|
|
try:
|
|
import tf_keras as keras
|
|
except (ModuleNotFoundError, ImportError):
|
|
import keras
|
|
|
|
if parse(keras.__version__).major > 2:
|
|
raise ValueError(
|
|
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
|
|
"Transformers. Please install the backwards-compatible tf-keras package with "
|
|
"`pip install tf-keras`."
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
AUTO = tf.data.AUTOTUNE
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Train a masked language model on TPU.")
|
|
parser.add_argument(
|
|
"--pretrained_model_config",
|
|
type=str,
|
|
default="roberta-base",
|
|
help="The model config to use. Note that we don't copy the model's weights, only the config!",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer",
|
|
type=str,
|
|
default="unigram-tokenizer-wikitext",
|
|
help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--per_replica_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size per TPU core.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--no_tpu",
|
|
action="store_true",
|
|
help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tpu_name",
|
|
type=str,
|
|
help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.",
|
|
default="local",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--tpu_zone",
|
|
type=str,
|
|
help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--gcp_project", type=str, help="Google cloud project name. Only used for non-Colab TPU nodes."
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--bfloat16",
|
|
action="store_true",
|
|
help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--train_dataset",
|
|
type=str,
|
|
help="Path to training dataset to load. If the path begins with `gs://`"
|
|
" then the dataset will be loaded from a Google Cloud Storage bucket.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--shuffle_buffer_size",
|
|
type=int,
|
|
default=2**18, # Default corresponds to a 1GB buffer for seq_len 512
|
|
help="Size of the shuffle buffer (in samples)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--eval_dataset",
|
|
type=str,
|
|
help="Path to evaluation dataset to load. If the path begins with `gs://`"
|
|
" then the dataset will be loaded from a Google Cloud Storage bucket.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--num_epochs",
|
|
type=int,
|
|
default=1,
|
|
help="Number of epochs to train for.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Learning rate to use for training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--weight_decay_rate",
|
|
type=float,
|
|
default=1e-3,
|
|
help="Weight decay rate to use for training.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--max_length",
|
|
type=int,
|
|
default=512,
|
|
help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--mlm_probability",
|
|
type=float,
|
|
default=0.15,
|
|
help="Fraction of tokens to mask during training.",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=True, help="Path to save model checkpoints to.")
|
|
parser.add_argument("--hub_model_id", type=str, help="Model ID to upload to on the Hugging Face Hub.")
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def initialize_tpu(args):
|
|
try:
|
|
if args.tpu_name:
|
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(
|
|
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project
|
|
)
|
|
else:
|
|
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
except ValueError:
|
|
raise RuntimeError(
|
|
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
|
|
"--gcp_project. When running on a TPU VM, use --tpu_name local."
|
|
)
|
|
|
|
tf.config.experimental_connect_to_cluster(tpu)
|
|
tf.tpu.experimental.initialize_tpu_system(tpu)
|
|
|
|
return tpu
|
|
|
|
|
|
def count_samples(file_list):
|
|
num_samples = 0
|
|
for file in file_list:
|
|
filename = file.split("/")[-1]
|
|
sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1)
|
|
sample_count = int(sample_count)
|
|
num_samples += sample_count
|
|
|
|
return num_samples
|
|
|
|
|
|
def prepare_dataset(records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None):
|
|
num_samples = count_samples(records)
|
|
dataset = tf.data.Dataset.from_tensor_slices(records)
|
|
if shuffle:
|
|
dataset = dataset.shuffle(len(dataset))
|
|
dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=AUTO)
|
|
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
|
|
dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples))
|
|
dataset = dataset.map(decode_fn, num_parallel_calls=AUTO)
|
|
if shuffle:
|
|
assert shuffle_buffer_size is not None
|
|
dataset = dataset.shuffle(args.shuffle_buffer_size)
|
|
dataset = dataset.batch(batch_size, drop_remainder=True)
|
|
dataset = dataset.map(mask_fn, num_parallel_calls=AUTO)
|
|
dataset = dataset.prefetch(AUTO)
|
|
return dataset
|
|
|
|
|
|
def main(args):
|
|
if not args.no_tpu:
|
|
tpu = initialize_tpu(args)
|
|
strategy = tf.distribute.TPUStrategy(tpu)
|
|
else:
|
|
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
|
|
|
|
if args.bfloat16:
|
|
keras.mixed_precision.set_global_policy("mixed_bfloat16")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
|
|
config = AutoConfig.from_pretrained(args.pretrained_model_config)
|
|
config.vocab_size = tokenizer.vocab_size
|
|
|
|
training_records = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord"))
|
|
if not training_records:
|
|
raise ValueError(f"No .tfrecord files found in {args.train_dataset}.")
|
|
eval_records = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord"))
|
|
if not eval_records:
|
|
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}.")
|
|
|
|
num_train_samples = count_samples(training_records)
|
|
|
|
steps_per_epoch = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
|
|
total_train_steps = steps_per_epoch * args.num_epochs
|
|
|
|
with strategy.scope():
|
|
model = TFAutoModelForMaskedLM.from_config(config)
|
|
model(model.dummy_inputs) # Pass some dummy inputs through the model to ensure all the weights are built
|
|
optimizer, schedule = create_optimizer(
|
|
num_train_steps=total_train_steps,
|
|
num_warmup_steps=total_train_steps // 20,
|
|
init_lr=args.learning_rate,
|
|
weight_decay_rate=args.weight_decay_rate,
|
|
)
|
|
|
|
# Transformers models compute the right loss for their task by default when labels are passed, and will
|
|
# use this for training unless you specify your own loss function in compile().
|
|
model.compile(optimizer=optimizer, metrics=["accuracy"])
|
|
|
|
def decode_fn(example):
|
|
features = {
|
|
"input_ids": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
|
|
"attention_mask": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)),
|
|
}
|
|
return tf.io.parse_single_example(example, features)
|
|
|
|
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
|
|
# use their methods in our data pipeline.
|
|
data_collator = DataCollatorForLanguageModeling(
|
|
tokenizer=tokenizer, mlm_probability=args.mlm_probability, mlm=True, return_tensors="tf"
|
|
)
|
|
|
|
def mask_with_collator(batch):
|
|
# TF really needs an isin() function
|
|
special_tokens_mask = (
|
|
~tf.cast(batch["attention_mask"], tf.bool)
|
|
| (batch["input_ids"] == tokenizer.cls_token_id)
|
|
| (batch["input_ids"] == tokenizer.sep_token_id)
|
|
)
|
|
batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens(
|
|
batch["input_ids"],
|
|
vocab_size=len(tokenizer),
|
|
mask_token_id=tokenizer.mask_token_id,
|
|
special_tokens_mask=special_tokens_mask,
|
|
)
|
|
return batch
|
|
|
|
batch_size = args.per_replica_batch_size * strategy.num_replicas_in_sync
|
|
|
|
train_dataset = prepare_dataset(
|
|
training_records,
|
|
decode_fn=decode_fn,
|
|
mask_fn=mask_with_collator,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
shuffle_buffer_size=args.shuffle_buffer_size,
|
|
)
|
|
|
|
eval_dataset = prepare_dataset(
|
|
eval_records,
|
|
decode_fn=decode_fn,
|
|
mask_fn=mask_with_collator,
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
)
|
|
|
|
callbacks = []
|
|
if args.hub_model_id:
|
|
callbacks.append(
|
|
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=tokenizer)
|
|
)
|
|
|
|
model.fit(
|
|
train_dataset,
|
|
validation_data=eval_dataset,
|
|
epochs=args.num_epochs,
|
|
callbacks=callbacks,
|
|
)
|
|
|
|
model.save_pretrained(args.output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|