721ee783ca
* Fix typos and grammar mistakes in docs and examples * Fix typos in docstrings and comments * Fix spelling of `tokenizer` in model tests * Remove erroneous spaces in decorators * Remove extra spaces in Markdown link texts |
||
---|---|---|
.. | ||
Dockerfile | ||
README.md | ||
evaluate-hf-trt-qa.py | ||
ort-infer-benchmark.py | ||
quant_trainer.py | ||
run_quant_qa.py | ||
trainer_quant_qa.py | ||
utils_qa.py |
README.md
Huggingface QDQBERT Quantization Example
The QDQBERT model adds fake quantization (pair of QuantizeLinear/DequantizeLinear ops) to:
- linear layer inputs and weights
- matmul inputs
- residual add inputs
In this example, we use QDQBERT model to do quantization on SQuAD task, including Quantization Aware Training (QAT), Post Training Quantization (PTQ) and inferencing using TensorRT.
Required:
- pytorch-quantization toolkit
- TensorRT >= 8.2
- PyTorch >= 1.10.0
Setup the environment with Dockerfile
Under the directory of transformers/
, build the docker image:
docker build . -f examples/research_projects/quantization-qdqbert/Dockerfile -t bert_quantization:latest
Run the docker:
docker run --gpus all --privileged --rm -it --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 bert_quantization:latest
In the container:
cd transformers/examples/research_projects/quantization-qdqbert/
Quantization Aware Training (QAT)
Calibrate the pretrained model and finetune with quantization awared:
python3 run_quant_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir calib/bert-base-uncased \
--do_calib \
--calibrator percentile \
--percentile 99.99
python3 run_quant_qa.py \
--model_name_or_path calib/bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 4e-5 \
--num_train_epochs 2 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir finetuned_int8/bert-base-uncased \
--tokenizer_name bert-base-uncased \
--save_steps 0
Export QAT model to ONNX
To export the QAT model finetuned above:
python3 run_quant_qa.py \
--model_name_or_path finetuned_int8/bert-base-uncased \
--output_dir ./ \
--save_onnx \
--per_device_eval_batch_size 1 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased
Use --recalibrate-weights
to calibrate the weight ranges according to the quantizer axis. Use --quant-per-tensor
for per tensor quantization (default is per channel).
Recalibrating will affect the accuracy of the model, but the change should be minimal (< 0.5 F1).
Benchmark the INT8 QAT ONNX model inference with TensorRT using dummy input
trtexec --onnx=model.onnx --explicitBatch --workspace=16384 --int8 --shapes=input_ids:64x128,attention_mask:64x128,token_type_ids:64x128 --verbose
Benchmark the INT8 QAT ONNX model inference with ONNX Runtime-TRT using dummy input
python3 ort-infer-benchmark.py
Evaluate the INT8 QAT ONNX model inference with TensorRT
python3 evaluate-hf-trt-qa.py \
--onnx_model_path=./model.onnx \
--output_dir ./ \
--per_device_eval_batch_size 64 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased \
--int8 \
--seed 42
Fine-tuning of FP32 model for comparison
Finetune a fp32 precision model with transformers/examples/pytorch/question-answering/:
python3 ../../pytorch/question-answering/run_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir ./finetuned_fp32/bert-base-uncased \
--save_steps 0 \
--do_train \
--do_eval
Post Training Quantization (PTQ)
PTQ by calibrating and evaluating the finetuned FP32 model above:
python3 run_quant_qa.py \
--model_name_or_path ./finetuned_fp32/bert-base-uncased \
--dataset_name squad \
--calibrator percentile \
--percentile 99.99 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir ./calib/bert-base-uncased \
--save_steps 0 \
--do_calib \
--do_eval
Export the INT8 PTQ model to ONNX
python3 run_quant_qa.py \
--model_name_or_path ./calib/bert-base-uncased \
--output_dir ./ \
--save_onnx \
--per_device_eval_batch_size 1 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased
Evaluate the INT8 PTQ ONNX model inference with TensorRT
python3 evaluate-hf-trt-qa.py \
--onnx_model_path=./model.onnx \
--output_dir ./ \
--per_device_eval_batch_size 64 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased \
--int8 \
--seed 42
Quantization options
Some useful options to support different implementations and optimizations. These should be specified for both calibration and finetuning.
argument | description |
---|---|
--quant-per-tensor |
quantize weights with one quantization range per tensor |
--fuse-qkv |
use a single range (the max) for quantizing QKV weights and output activations |
--clip-gelu N |
clip the output of GELU to a maximum of N when quantizing (e.g. 10) |
--disable-dropout |
disable dropout for consistent activation ranges |