472 lines
18 KiB
Python
Executable File
472 lines
18 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
|
|
Adapted from `examples/text-classification/run_glue.py`"""
|
|
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import evaluate
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
DataCollatorWithPadding,
|
|
EvalPrediction,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
default_data_collator,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
max_seq_length: Optional[int] = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": (
|
|
"Whether to pad all samples to `max_seq_length`. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
|
)
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
language: str = field(
|
|
default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
|
|
)
|
|
train_language: Optional[str] = field(
|
|
default=None, metadata={"help": "Train language if it is different from the evaluation language."}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
do_lower_case: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
ignore_mismatched_sizes: bool = field(
|
|
default=False,
|
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_xnli", model_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
# Downloading and loading xnli dataset from the hub.
|
|
if training_args.do_train:
|
|
if model_args.train_language is None:
|
|
train_dataset = load_dataset(
|
|
"xnli",
|
|
model_args.language,
|
|
split="train",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
train_dataset = load_dataset(
|
|
"xnli",
|
|
model_args.train_language,
|
|
split="train",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
label_list = train_dataset.features["label"].names
|
|
|
|
if training_args.do_eval:
|
|
eval_dataset = load_dataset(
|
|
"xnli",
|
|
model_args.language,
|
|
split="validation",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
label_list = eval_dataset.features["label"].names
|
|
|
|
if training_args.do_predict:
|
|
predict_dataset = load_dataset(
|
|
"xnli",
|
|
model_args.language,
|
|
split="test",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
label_list = predict_dataset.features["label"].names
|
|
|
|
# Labels
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
id2label={str(i): label for i, label in enumerate(label_list)},
|
|
label2id={label: i for i, label in enumerate(label_list)},
|
|
finetuning_task="xnli",
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
do_lower_case=model_args.do_lower_case,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
|
)
|
|
|
|
# Preprocessing the datasets
|
|
# Padding strategy
|
|
if data_args.pad_to_max_length:
|
|
padding = "max_length"
|
|
else:
|
|
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
|
padding = False
|
|
|
|
def preprocess_function(examples):
|
|
# Tokenize the texts
|
|
return tokenizer(
|
|
examples["premise"],
|
|
examples["hypothesis"],
|
|
padding=padding,
|
|
max_length=data_args.max_seq_length,
|
|
truncation=True,
|
|
)
|
|
|
|
if training_args.do_train:
|
|
if data_args.max_train_samples is not None:
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
|
train_dataset = train_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on train dataset",
|
|
)
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
if training_args.do_eval:
|
|
if data_args.max_eval_samples is not None:
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
|
eval_dataset = eval_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on validation dataset",
|
|
)
|
|
|
|
if training_args.do_predict:
|
|
if data_args.max_predict_samples is not None:
|
|
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
|
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
|
predict_dataset = predict_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on prediction dataset",
|
|
)
|
|
|
|
# Get the metric function
|
|
metric = evaluate.load("xnli", cache_dir=model_args.cache_dir)
|
|
|
|
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
|
# predictions and label_ids field) and has to return a dictionary string to float.
|
|
def compute_metrics(p: EvalPrediction):
|
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
|
preds = np.argmax(preds, axis=1)
|
|
return metric.compute(predictions=preds, references=p.label_ids)
|
|
|
|
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
|
|
if data_args.pad_to_max_length:
|
|
data_collator = default_data_collator
|
|
elif training_args.fp16:
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
|
else:
|
|
data_collator = None
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate(eval_dataset=eval_dataset)
|
|
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Prediction
|
|
if training_args.do_predict:
|
|
logger.info("*** Predict ***")
|
|
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
|
|
|
|
max_predict_samples = (
|
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
|
)
|
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
|
|
|
trainer.log_metrics("predict", metrics)
|
|
trainer.save_metrics("predict", metrics)
|
|
|
|
predictions = np.argmax(predictions, axis=1)
|
|
output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_predict_file, "w") as writer:
|
|
writer.write("index\tprediction\n")
|
|
for index, item in enumerate(predictions):
|
|
item = label_list[item]
|
|
writer.write(f"{index}\t{item}\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|