764 lines
33 KiB
Python
Executable File
764 lines
33 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Finetuning the library models for text classification."""
|
|
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
|
|
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import List, Optional
|
|
|
|
import datasets
|
|
import evaluate
|
|
import numpy as np
|
|
from datasets import Value, load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
DataCollatorWithPadding,
|
|
EvalPrediction,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
default_data_collator,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
do_regression: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "Whether to do regression instead of classification. If None, will be inferred from the dataset."
|
|
},
|
|
)
|
|
text_column_names: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The name of the text column in the input dataset or a CSV/JSON file. "
|
|
'If not specified, will use the "sentence" column for single/multi-label classification task.'
|
|
)
|
|
},
|
|
)
|
|
text_column_delimiter: Optional[str] = field(
|
|
default=" ", metadata={"help": "THe delimiter to use to join text columns into a single sentence."}
|
|
)
|
|
train_split_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": 'The name of the train split in the input dataset. If not specified, will use the "train" split when do_train is enabled'
|
|
},
|
|
)
|
|
validation_split_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": 'The name of the validation split in the input dataset. If not specified, will use the "validation" split when do_eval is enabled'
|
|
},
|
|
)
|
|
test_split_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": 'The name of the test split in the input dataset. If not specified, will use the "test" split when do_predict is enabled'
|
|
},
|
|
)
|
|
remove_splits: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The splits to remove from the dataset. Multiple splits should be separated by commas."},
|
|
)
|
|
remove_columns: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The columns to remove from the dataset. Multiple columns should be separated by commas."},
|
|
)
|
|
label_column_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The name of the label column in the input dataset or a CSV/JSON file. "
|
|
'If not specified, will use the "label" column for single/multi-label classification task'
|
|
)
|
|
},
|
|
)
|
|
max_seq_length: int = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": (
|
|
"Whether to pad all samples to `max_seq_length`. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
|
)
|
|
},
|
|
)
|
|
shuffle_train_dataset: bool = field(
|
|
default=False, metadata={"help": "Whether to shuffle the train dataset or not."}
|
|
)
|
|
shuffle_seed: int = field(
|
|
default=42, metadata={"help": "Random seed that will be used to shuffle the train dataset."}
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
metric_name: Optional[str] = field(default=None, metadata={"help": "The metric to use for evaluation."})
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "A csv or a json file containing the training data."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None, metadata={"help": "A csv or a json file containing the validation data."}
|
|
)
|
|
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None:
|
|
if self.train_file is None or self.validation_file is None:
|
|
raise ValueError(" training/validation file or a dataset name.")
|
|
|
|
train_extension = self.train_file.split(".")[-1]
|
|
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
validation_extension = self.validation_file.split(".")[-1]
|
|
assert (
|
|
validation_extension == train_extension
|
|
), "`validation_file` should have the same extension (csv or json) as `train_file`."
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
ignore_mismatched_sizes: bool = field(
|
|
default=False,
|
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
|
)
|
|
|
|
|
|
def get_label_list(raw_dataset, split="train") -> List[str]:
|
|
"""Get the list of labels from a multi-label dataset"""
|
|
|
|
if isinstance(raw_dataset[split]["label"][0], list):
|
|
label_list = [label for sample in raw_dataset[split]["label"] for label in sample]
|
|
label_list = list(set(label_list))
|
|
else:
|
|
label_list = raw_dataset[split].unique("label")
|
|
# we will treat the label list as a list of string instead of int, consistent with model.config.label2id
|
|
label_list = [str(label) for label in label_list]
|
|
return label_list
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_classification", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files, or specify a dataset name
|
|
# to load from huggingface/datasets. In ether case, you can specify a the key of the column(s) containing the text and
|
|
# the key of the column containing the label. If multiple columns are specified for the text, they will be joined together
|
|
# for the actual text value.
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
# Try print some info about the dataset
|
|
logger.info(f"Dataset loaded: {raw_datasets}")
|
|
logger.info(raw_datasets)
|
|
else:
|
|
# Loading a dataset from your local files.
|
|
# CSV/JSON training and evaluation files are needed.
|
|
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
|
|
|
|
# Get the test dataset: you can provide your own CSV/JSON test file
|
|
if training_args.do_predict:
|
|
if data_args.test_file is not None:
|
|
train_extension = data_args.train_file.split(".")[-1]
|
|
test_extension = data_args.test_file.split(".")[-1]
|
|
assert (
|
|
test_extension == train_extension
|
|
), "`test_file` should have the same extension (csv or json) as `train_file`."
|
|
data_files["test"] = data_args.test_file
|
|
else:
|
|
raise ValueError("Need either a dataset name or a test file for `do_predict`.")
|
|
|
|
for key in data_files.keys():
|
|
logger.info(f"load a local file for {key}: {data_files[key]}")
|
|
|
|
if data_args.train_file.endswith(".csv"):
|
|
# Loading a dataset from local csv files
|
|
raw_datasets = load_dataset(
|
|
"csv",
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
# Loading a dataset from local json files
|
|
raw_datasets = load_dataset(
|
|
"json",
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
|
|
# See more about loading any type of standard or custom dataset at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
if data_args.remove_splits is not None:
|
|
for split in data_args.remove_splits.split(","):
|
|
logger.info(f"removing split {split}")
|
|
raw_datasets.pop(split)
|
|
|
|
if data_args.train_split_name is not None:
|
|
logger.info(f"using {data_args.validation_split_name} as validation set")
|
|
raw_datasets["train"] = raw_datasets[data_args.train_split_name]
|
|
raw_datasets.pop(data_args.train_split_name)
|
|
|
|
if data_args.validation_split_name is not None:
|
|
logger.info(f"using {data_args.validation_split_name} as validation set")
|
|
raw_datasets["validation"] = raw_datasets[data_args.validation_split_name]
|
|
raw_datasets.pop(data_args.validation_split_name)
|
|
|
|
if data_args.test_split_name is not None:
|
|
logger.info(f"using {data_args.test_split_name} as test set")
|
|
raw_datasets["test"] = raw_datasets[data_args.test_split_name]
|
|
raw_datasets.pop(data_args.test_split_name)
|
|
|
|
if data_args.remove_columns is not None:
|
|
for split in raw_datasets.keys():
|
|
for column in data_args.remove_columns.split(","):
|
|
logger.info(f"removing column {column} from split {split}")
|
|
raw_datasets[split].remove_columns(column)
|
|
|
|
if data_args.label_column_name is not None and data_args.label_column_name != "label":
|
|
for key in raw_datasets.keys():
|
|
raw_datasets[key] = raw_datasets[key].rename_column(data_args.label_column_name, "label")
|
|
|
|
# Trying to have good defaults here, don't hesitate to tweak to your needs.
|
|
|
|
is_regression = (
|
|
raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
|
|
if data_args.do_regression is None
|
|
else data_args.do_regression
|
|
)
|
|
|
|
is_multi_label = False
|
|
if is_regression:
|
|
label_list = None
|
|
num_labels = 1
|
|
# regession requires float as label type, let's cast it if needed
|
|
for split in raw_datasets.keys():
|
|
if raw_datasets[split].features["label"].dtype not in ["float32", "float64"]:
|
|
logger.warning(
|
|
f"Label type for {split} set to float32, was {raw_datasets[split].features['label'].dtype}"
|
|
)
|
|
features = raw_datasets[split].features
|
|
features.update({"label": Value("float32")})
|
|
try:
|
|
raw_datasets[split] = raw_datasets[split].cast(features)
|
|
except TypeError as error:
|
|
logger.error(
|
|
f"Unable to cast {split} set to float32, please check the labels are correct, or maybe try with --do_regression=False"
|
|
)
|
|
raise error
|
|
|
|
else: # classification
|
|
if raw_datasets["train"].features["label"].dtype == "list": # multi-label classification
|
|
is_multi_label = True
|
|
logger.info("Label type is list, doing multi-label classification")
|
|
# Trying to find the number of labels in a multi-label classification task
|
|
# We have to deal with common cases that labels appear in the training set but not in the validation/test set.
|
|
# So we build the label list from the union of labels in train/val/test.
|
|
label_list = get_label_list(raw_datasets, split="train")
|
|
for split in ["validation", "test"]:
|
|
if split in raw_datasets:
|
|
val_or_test_labels = get_label_list(raw_datasets, split=split)
|
|
diff = set(val_or_test_labels).difference(set(label_list))
|
|
if len(diff) > 0:
|
|
# add the labels that appear in val/test but not in train, throw a warning
|
|
logger.warning(
|
|
f"Labels {diff} in {split} set but not in training set, adding them to the label list"
|
|
)
|
|
label_list += list(diff)
|
|
# if label is -1, we throw a warning and remove it from the label list
|
|
for label in label_list:
|
|
if label == -1:
|
|
logger.warning("Label -1 found in label list, removing it.")
|
|
label_list.remove(label)
|
|
|
|
label_list.sort()
|
|
num_labels = len(label_list)
|
|
if num_labels <= 1:
|
|
raise ValueError("You need more than one label to do classification.")
|
|
|
|
# Load pretrained model and tokenizer
|
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
finetuning_task="text-classification",
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
if is_regression:
|
|
config.problem_type = "regression"
|
|
logger.info("setting problem type to regression")
|
|
elif is_multi_label:
|
|
config.problem_type = "multi_label_classification"
|
|
logger.info("setting problem type to multi label classification")
|
|
else:
|
|
config.problem_type = "single_label_classification"
|
|
logger.info("setting problem type to single label classification")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
|
)
|
|
|
|
# Padding strategy
|
|
if data_args.pad_to_max_length:
|
|
padding = "max_length"
|
|
else:
|
|
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
|
padding = False
|
|
|
|
# for training ,we will update the config with label infos,
|
|
# if do_train is not set, we will use the label infos in the config
|
|
if training_args.do_train and not is_regression: # classification, training
|
|
label_to_id = {v: i for i, v in enumerate(label_list)}
|
|
# update config with label infos
|
|
if model.config.label2id != label_to_id:
|
|
logger.warning(
|
|
"The label2id key in the model config.json is not equal to the label2id key of this "
|
|
"run. You can ignore this if you are doing finetuning."
|
|
)
|
|
model.config.label2id = label_to_id
|
|
model.config.id2label = {id: label for label, id in label_to_id.items()}
|
|
elif not is_regression: # classification, but not training
|
|
logger.info("using label infos in the model config")
|
|
logger.info("label2id: {}".format(model.config.label2id))
|
|
label_to_id = model.config.label2id
|
|
else: # regression
|
|
label_to_id = None
|
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length:
|
|
logger.warning(
|
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
|
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
|
)
|
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
|
|
|
def multi_labels_to_ids(labels: List[str]) -> List[float]:
|
|
ids = [0.0] * len(label_to_id) # BCELoss requires float as target type
|
|
for label in labels:
|
|
ids[label_to_id[label]] = 1.0
|
|
return ids
|
|
|
|
def preprocess_function(examples):
|
|
if data_args.text_column_names is not None:
|
|
text_column_names = data_args.text_column_names.split(",")
|
|
# join together text columns into "sentence" column
|
|
examples["sentence"] = examples[text_column_names[0]]
|
|
for column in text_column_names[1:]:
|
|
for i in range(len(examples[column])):
|
|
examples["sentence"][i] += data_args.text_column_delimiter + examples[column][i]
|
|
# Tokenize the texts
|
|
result = tokenizer(examples["sentence"], padding=padding, max_length=max_seq_length, truncation=True)
|
|
if label_to_id is not None and "label" in examples:
|
|
if is_multi_label:
|
|
result["label"] = [multi_labels_to_ids(l) for l in examples["label"]]
|
|
else:
|
|
result["label"] = [(label_to_id[str(l)] if l != -1 else -1) for l in examples["label"]]
|
|
return result
|
|
|
|
# Running the preprocessing pipeline on all the datasets
|
|
with training_args.main_process_first(desc="dataset map pre-processing"):
|
|
raw_datasets = raw_datasets.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on dataset",
|
|
)
|
|
|
|
if training_args.do_train:
|
|
if "train" not in raw_datasets:
|
|
raise ValueError("--do_train requires a train dataset.")
|
|
train_dataset = raw_datasets["train"]
|
|
if data_args.shuffle_train_dataset:
|
|
logger.info("Shuffling the training dataset")
|
|
train_dataset = train_dataset.shuffle(seed=data_args.shuffle_seed)
|
|
if data_args.max_train_samples is not None:
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
|
|
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
|
|
raise ValueError("--do_eval requires a validation or test dataset if validation is not defined.")
|
|
else:
|
|
logger.warning("Validation dataset not found. Falling back to test dataset for validation.")
|
|
eval_dataset = raw_datasets["test"]
|
|
else:
|
|
eval_dataset = raw_datasets["validation"]
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
|
|
if training_args.do_predict or data_args.test_file is not None:
|
|
if "test" not in raw_datasets:
|
|
raise ValueError("--do_predict requires a test dataset")
|
|
predict_dataset = raw_datasets["test"]
|
|
# remove label column if it exists
|
|
if data_args.max_predict_samples is not None:
|
|
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
|
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
|
|
|
# Log a few random samples from the training set:
|
|
if training_args.do_train:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
if data_args.metric_name is not None:
|
|
metric = (
|
|
evaluate.load(data_args.metric_name, config_name="multilabel", cache_dir=model_args.cache_dir)
|
|
if is_multi_label
|
|
else evaluate.load(data_args.metric_name, cache_dir=model_args.cache_dir)
|
|
)
|
|
logger.info(f"Using metric {data_args.metric_name} for evaluation.")
|
|
else:
|
|
if is_regression:
|
|
metric = evaluate.load("mse", cache_dir=model_args.cache_dir)
|
|
logger.info("Using mean squared error (mse) as regression score, you can use --metric_name to overwrite.")
|
|
else:
|
|
if is_multi_label:
|
|
metric = evaluate.load("f1", config_name="multilabel", cache_dir=model_args.cache_dir)
|
|
logger.info(
|
|
"Using multilabel F1 for multi-label classification task, you can use --metric_name to overwrite."
|
|
)
|
|
else:
|
|
metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
|
|
logger.info("Using accuracy as classification score, you can use --metric_name to overwrite.")
|
|
|
|
def compute_metrics(p: EvalPrediction):
|
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
|
if is_regression:
|
|
preds = np.squeeze(preds)
|
|
result = metric.compute(predictions=preds, references=p.label_ids)
|
|
elif is_multi_label:
|
|
preds = np.array([np.where(p > 0, 1, 0) for p in preds]) # convert logits to multi-hot encoding
|
|
# Micro F1 is commonly used in multi-label classification
|
|
result = metric.compute(predictions=preds, references=p.label_ids, average="micro")
|
|
else:
|
|
preds = np.argmax(preds, axis=1)
|
|
result = metric.compute(predictions=preds, references=p.label_ids)
|
|
if len(result) > 1:
|
|
result["combined_score"] = np.mean(list(result.values())).item()
|
|
return result
|
|
|
|
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
|
|
# we already did the padding.
|
|
if data_args.pad_to_max_length:
|
|
data_collator = default_data_collator
|
|
elif training_args.fp16:
|
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
|
else:
|
|
data_collator = None
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate(eval_dataset=eval_dataset)
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
if training_args.do_predict:
|
|
logger.info("*** Predict ***")
|
|
# Removing the `label` columns if exists because it might contains -1 and Trainer won't like that.
|
|
if "label" in predict_dataset.features:
|
|
predict_dataset = predict_dataset.remove_columns("label")
|
|
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
|
|
if is_regression:
|
|
predictions = np.squeeze(predictions)
|
|
elif is_multi_label:
|
|
# Convert logits to multi-hot encoding. We compare the logits to 0 instead of 0.5, because the sigmoid is not applied.
|
|
# You can also pass `preprocess_logits_for_metrics=lambda logits, labels: nn.functional.sigmoid(logits)` to the Trainer
|
|
# and set p > 0.5 below (less efficient in this case)
|
|
predictions = np.array([np.where(p > 0, 1, 0) for p in predictions])
|
|
else:
|
|
predictions = np.argmax(predictions, axis=1)
|
|
output_predict_file = os.path.join(training_args.output_dir, "predict_results.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_predict_file, "w") as writer:
|
|
logger.info("***** Predict results *****")
|
|
writer.write("index\tprediction\n")
|
|
for index, item in enumerate(predictions):
|
|
if is_regression:
|
|
writer.write(f"{index}\t{item:3.3f}\n")
|
|
elif is_multi_label:
|
|
# recover from multi-hot encoding
|
|
item = [label_list[i] for i in range(len(item)) if item[i] == 1]
|
|
writer.write(f"{index}\t{item}\n")
|
|
else:
|
|
item = label_list[item]
|
|
writer.write(f"{index}\t{item}\n")
|
|
logger.info("Predict results saved at {}".format(output_predict_file))
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|