717 lines
32 KiB
Python
Executable File
717 lines
32 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for question answering using a slightly adapted version of the 🤗 Trainer.
|
|
"""
|
|
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import evaluate
|
|
from datasets import load_dataset
|
|
from trainer_qa import QuestionAnsweringTrainer
|
|
from utils_qa import postprocess_qa_predictions
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForQuestionAnswering,
|
|
AutoTokenizer,
|
|
DataCollatorWithPadding,
|
|
EvalPrediction,
|
|
HfArgumentParser,
|
|
PreTrainedTokenizerFast,
|
|
TrainingArguments,
|
|
default_data_collator,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_seq_length: int = field(
|
|
default=384,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=True,
|
|
metadata={
|
|
"help": (
|
|
"Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
|
|
" batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
|
|
)
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
version_2_with_negative: bool = field(
|
|
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
|
|
)
|
|
null_score_diff_threshold: float = field(
|
|
default=0.0,
|
|
metadata={
|
|
"help": (
|
|
"The threshold used to select the null answer: if the best answer has a score that is less than "
|
|
"the score of the null answer minus this threshold, the null answer is selected for this example. "
|
|
"Only useful when `version_2_with_negative=True`."
|
|
)
|
|
},
|
|
)
|
|
doc_stride: int = field(
|
|
default=128,
|
|
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
|
|
)
|
|
n_best_size: int = field(
|
|
default=20,
|
|
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
|
|
)
|
|
max_answer_length: int = field(
|
|
default=30,
|
|
metadata={
|
|
"help": (
|
|
"The maximum length of an answer that can be generated. This is needed because the start "
|
|
"and end predictions are not conditioned on one another."
|
|
)
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if (
|
|
self.dataset_name is None
|
|
and self.train_file is None
|
|
and self.validation_file is None
|
|
and self.test_file is None
|
|
):
|
|
raise ValueError("Need either a dataset name or a training/validation file/test_file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
if self.test_file is not None:
|
|
extension = self.test_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_qa", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
|
# 'text' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if data_args.test_file is not None:
|
|
data_files["test"] = data_args.test_file
|
|
extension = data_args.test_file.split(".")[-1]
|
|
raw_datasets = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
field="data",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=True,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForQuestionAnswering.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
# Tokenizer check: this script requires a fast tokenizer.
|
|
if not isinstance(tokenizer, PreTrainedTokenizerFast):
|
|
raise ValueError(
|
|
"This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
|
|
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
|
|
" this requirement"
|
|
)
|
|
|
|
# Preprocessing the datasets.
|
|
# Preprocessing is slightly different for training and evaluation.
|
|
if training_args.do_train:
|
|
column_names = raw_datasets["train"].column_names
|
|
elif training_args.do_eval:
|
|
column_names = raw_datasets["validation"].column_names
|
|
else:
|
|
column_names = raw_datasets["test"].column_names
|
|
question_column_name = "question" if "question" in column_names else column_names[0]
|
|
context_column_name = "context" if "context" in column_names else column_names[1]
|
|
answer_column_name = "answers" if "answers" in column_names else column_names[2]
|
|
|
|
# Padding side determines if we do (question|context) or (context|question).
|
|
pad_on_right = tokenizer.padding_side == "right"
|
|
|
|
if data_args.max_seq_length > tokenizer.model_max_length:
|
|
logger.warning(
|
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the "
|
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
|
)
|
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
|
|
|
# Training preprocessing
|
|
def prepare_train_features(examples):
|
|
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
|
|
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
|
|
# left whitespace
|
|
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
|
|
|
|
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
|
|
# in one example possible giving several features when a context is long, each of those features having a
|
|
# context that overlaps a bit the context of the previous feature.
|
|
tokenized_examples = tokenizer(
|
|
examples[question_column_name if pad_on_right else context_column_name],
|
|
examples[context_column_name if pad_on_right else question_column_name],
|
|
truncation="only_second" if pad_on_right else "only_first",
|
|
max_length=max_seq_length,
|
|
stride=data_args.doc_stride,
|
|
return_overflowing_tokens=True,
|
|
return_offsets_mapping=True,
|
|
padding="max_length" if data_args.pad_to_max_length else False,
|
|
)
|
|
|
|
# Since one example might give us several features if it has a long context, we need a map from a feature to
|
|
# its corresponding example. This key gives us just that.
|
|
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
|
|
# The offset mappings will give us a map from token to character position in the original context. This will
|
|
# help us compute the start_positions and end_positions.
|
|
offset_mapping = tokenized_examples.pop("offset_mapping")
|
|
|
|
# Let's label those examples!
|
|
tokenized_examples["start_positions"] = []
|
|
tokenized_examples["end_positions"] = []
|
|
|
|
for i, offsets in enumerate(offset_mapping):
|
|
# We will label impossible answers with the index of the CLS token.
|
|
input_ids = tokenized_examples["input_ids"][i]
|
|
cls_index = input_ids.index(tokenizer.cls_token_id)
|
|
|
|
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
|
|
sequence_ids = tokenized_examples.sequence_ids(i)
|
|
|
|
# One example can give several spans, this is the index of the example containing this span of text.
|
|
sample_index = sample_mapping[i]
|
|
answers = examples[answer_column_name][sample_index]
|
|
# If no answers are given, set the cls_index as answer.
|
|
if len(answers["answer_start"]) == 0:
|
|
tokenized_examples["start_positions"].append(cls_index)
|
|
tokenized_examples["end_positions"].append(cls_index)
|
|
else:
|
|
# Start/end character index of the answer in the text.
|
|
start_char = answers["answer_start"][0]
|
|
end_char = start_char + len(answers["text"][0])
|
|
|
|
# Start token index of the current span in the text.
|
|
token_start_index = 0
|
|
while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
|
|
token_start_index += 1
|
|
|
|
# End token index of the current span in the text.
|
|
token_end_index = len(input_ids) - 1
|
|
while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
|
|
token_end_index -= 1
|
|
|
|
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
|
|
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
|
|
tokenized_examples["start_positions"].append(cls_index)
|
|
tokenized_examples["end_positions"].append(cls_index)
|
|
else:
|
|
# Otherwise move the token_start_index and token_end_index to the two ends of the answer.
|
|
# Note: we could go after the last offset if the answer is the last word (edge case).
|
|
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
|
|
token_start_index += 1
|
|
tokenized_examples["start_positions"].append(token_start_index - 1)
|
|
while offsets[token_end_index][1] >= end_char:
|
|
token_end_index -= 1
|
|
tokenized_examples["end_positions"].append(token_end_index + 1)
|
|
|
|
return tokenized_examples
|
|
|
|
if training_args.do_train:
|
|
if "train" not in raw_datasets:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = raw_datasets["train"]
|
|
if data_args.max_train_samples is not None:
|
|
# We will select sample from whole data if argument is specified
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
# Create train feature from dataset
|
|
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
|
train_dataset = train_dataset.map(
|
|
prepare_train_features,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on train dataset",
|
|
)
|
|
if data_args.max_train_samples is not None:
|
|
# Number of samples might increase during Feature Creation, We select only specified max samples
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
|
|
# Validation preprocessing
|
|
def prepare_validation_features(examples):
|
|
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
|
|
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
|
|
# left whitespace
|
|
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
|
|
|
|
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
|
|
# in one example possible giving several features when a context is long, each of those features having a
|
|
# context that overlaps a bit the context of the previous feature.
|
|
tokenized_examples = tokenizer(
|
|
examples[question_column_name if pad_on_right else context_column_name],
|
|
examples[context_column_name if pad_on_right else question_column_name],
|
|
truncation="only_second" if pad_on_right else "only_first",
|
|
max_length=max_seq_length,
|
|
stride=data_args.doc_stride,
|
|
return_overflowing_tokens=True,
|
|
return_offsets_mapping=True,
|
|
padding="max_length" if data_args.pad_to_max_length else False,
|
|
)
|
|
|
|
# Since one example might give us several features if it has a long context, we need a map from a feature to
|
|
# its corresponding example. This key gives us just that.
|
|
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
|
|
|
|
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
|
|
# corresponding example_id and we will store the offset mappings.
|
|
tokenized_examples["example_id"] = []
|
|
|
|
for i in range(len(tokenized_examples["input_ids"])):
|
|
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
|
|
sequence_ids = tokenized_examples.sequence_ids(i)
|
|
context_index = 1 if pad_on_right else 0
|
|
|
|
# One example can give several spans, this is the index of the example containing this span of text.
|
|
sample_index = sample_mapping[i]
|
|
tokenized_examples["example_id"].append(examples["id"][sample_index])
|
|
|
|
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
|
|
# position is part of the context or not.
|
|
tokenized_examples["offset_mapping"][i] = [
|
|
(o if sequence_ids[k] == context_index else None)
|
|
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
|
|
]
|
|
|
|
return tokenized_examples
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in raw_datasets:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
eval_examples = raw_datasets["validation"]
|
|
if data_args.max_eval_samples is not None:
|
|
# We will select sample from whole data
|
|
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
|
|
eval_examples = eval_examples.select(range(max_eval_samples))
|
|
# Validation Feature Creation
|
|
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
|
eval_dataset = eval_examples.map(
|
|
prepare_validation_features,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on validation dataset",
|
|
)
|
|
if data_args.max_eval_samples is not None:
|
|
# During Feature creation dataset samples might increase, we will select required samples again
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
|
|
if training_args.do_predict:
|
|
if "test" not in raw_datasets:
|
|
raise ValueError("--do_predict requires a test dataset")
|
|
predict_examples = raw_datasets["test"]
|
|
if data_args.max_predict_samples is not None:
|
|
# We will select sample from whole data
|
|
predict_examples = predict_examples.select(range(data_args.max_predict_samples))
|
|
# Predict Feature Creation
|
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
|
predict_dataset = predict_examples.map(
|
|
prepare_validation_features,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on prediction dataset",
|
|
)
|
|
if data_args.max_predict_samples is not None:
|
|
# During Feature creation dataset samples might increase, we will select required samples again
|
|
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
|
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
|
|
|
# Data collator
|
|
# We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
|
|
# collator.
|
|
data_collator = (
|
|
default_data_collator
|
|
if data_args.pad_to_max_length
|
|
else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
|
|
)
|
|
|
|
# Post-processing:
|
|
def post_processing_function(examples, features, predictions, stage="eval"):
|
|
# Post-processing: we match the start logits and end logits to answers in the original context.
|
|
predictions = postprocess_qa_predictions(
|
|
examples=examples,
|
|
features=features,
|
|
predictions=predictions,
|
|
version_2_with_negative=data_args.version_2_with_negative,
|
|
n_best_size=data_args.n_best_size,
|
|
max_answer_length=data_args.max_answer_length,
|
|
null_score_diff_threshold=data_args.null_score_diff_threshold,
|
|
output_dir=training_args.output_dir,
|
|
log_level=log_level,
|
|
prefix=stage,
|
|
)
|
|
# Format the result to the format the metric expects.
|
|
if data_args.version_2_with_negative:
|
|
formatted_predictions = [
|
|
{"id": str(k), "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
|
|
]
|
|
else:
|
|
formatted_predictions = [{"id": str(k), "prediction_text": v} for k, v in predictions.items()]
|
|
|
|
references = [{"id": str(ex["id"]), "answers": ex[answer_column_name]} for ex in examples]
|
|
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
|
|
|
|
metric = evaluate.load(
|
|
"squad_v2" if data_args.version_2_with_negative else "squad", cache_dir=model_args.cache_dir
|
|
)
|
|
|
|
def compute_metrics(p: EvalPrediction):
|
|
return metric.compute(predictions=p.predictions, references=p.label_ids)
|
|
|
|
# Initialize our Trainer
|
|
trainer = QuestionAnsweringTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
eval_examples=eval_examples if training_args.do_eval else None,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
post_process_function=post_processing_function,
|
|
compute_metrics=compute_metrics,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate()
|
|
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Prediction
|
|
if training_args.do_predict:
|
|
logger.info("*** Predict ***")
|
|
results = trainer.predict(predict_dataset, predict_examples)
|
|
metrics = results.metrics
|
|
|
|
max_predict_samples = (
|
|
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
|
|
)
|
|
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
|
|
|
|
trainer.log_metrics("predict", metrics)
|
|
trainer.save_metrics("predict", metrics)
|
|
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
|
|
if data_args.dataset_name is not None:
|
|
kwargs["dataset_tags"] = data_args.dataset_name
|
|
if data_args.dataset_config_name is not None:
|
|
kwargs["dataset_args"] = data_args.dataset_config_name
|
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
|
else:
|
|
kwargs["dataset"] = data_args.dataset_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|