499 lines
20 KiB
Python
499 lines
20 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
from datasets import load_dataset
|
|
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
IMAGE_PROCESSOR_MAPPING,
|
|
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
|
|
AutoConfig,
|
|
AutoImageProcessor,
|
|
AutoModelForMaskedImageModeling,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
""" Pre-training a 🤗 Transformers model for simple masked image modeling (SimMIM).
|
|
Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
|
"""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to
|
|
specify them on the command line.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default="cifar10", metadata={"help": "Name of a dataset from the datasets package"}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
image_column_name: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."},
|
|
)
|
|
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
|
|
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
|
|
train_val_split: Optional[float] = field(
|
|
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
|
)
|
|
mask_patch_size: int = field(default=32, metadata={"help": "The size of the square patches to use for masking."})
|
|
mask_ratio: float = field(
|
|
default=0.6,
|
|
metadata={"help": "Percentage of patches to mask."},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
data_files = {}
|
|
if self.train_dir is not None:
|
|
data_files["train"] = self.train_dir
|
|
if self.validation_dir is not None:
|
|
data_files["val"] = self.validation_dir
|
|
self.data_files = data_files if data_files else None
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/image processor we are going to pre-train.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
|
|
"checkpoint identifier on the hub. "
|
|
"Don't set if you want to train a model from scratch."
|
|
)
|
|
},
|
|
)
|
|
model_type: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
)
|
|
config_name_or_path: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
config_overrides: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Override some existing default config settings when a model is trained from scratch. Example: "
|
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
|
)
|
|
},
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
image_size: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The size (resolution) of each image. If not specified, will use `image_size` of the configuration."
|
|
)
|
|
},
|
|
)
|
|
patch_size: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."
|
|
)
|
|
},
|
|
)
|
|
encoder_stride: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "Stride to use for the encoder."},
|
|
)
|
|
|
|
|
|
class MaskGenerator:
|
|
"""
|
|
A class to generate boolean masks for the pretraining task.
|
|
|
|
A mask is a 1D tensor of shape (model_patch_size**2,) where the value is either 0 or 1,
|
|
where 1 indicates "masked".
|
|
"""
|
|
|
|
def __init__(self, input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6):
|
|
self.input_size = input_size
|
|
self.mask_patch_size = mask_patch_size
|
|
self.model_patch_size = model_patch_size
|
|
self.mask_ratio = mask_ratio
|
|
|
|
if self.input_size % self.mask_patch_size != 0:
|
|
raise ValueError("Input size must be divisible by mask patch size")
|
|
if self.mask_patch_size % self.model_patch_size != 0:
|
|
raise ValueError("Mask patch size must be divisible by model patch size")
|
|
|
|
self.rand_size = self.input_size // self.mask_patch_size
|
|
self.scale = self.mask_patch_size // self.model_patch_size
|
|
|
|
self.token_count = self.rand_size**2
|
|
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))
|
|
|
|
def __call__(self):
|
|
mask_idx = np.random.permutation(self.token_count)[: self.mask_count]
|
|
mask = np.zeros(self.token_count, dtype=int)
|
|
mask[mask_idx] = 1
|
|
|
|
mask = mask.reshape((self.rand_size, self.rand_size))
|
|
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
|
|
|
|
return torch.tensor(mask.flatten())
|
|
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
mask = torch.stack([example["mask"] for example in examples])
|
|
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_mim", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Initialize our dataset.
|
|
ds = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
data_files=data_args.data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
|
|
# If we don't have a validation split, split off a percentage of train as validation.
|
|
data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split
|
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
|
split = ds["train"].train_test_split(data_args.train_val_split)
|
|
ds["train"] = split["train"]
|
|
ds["validation"] = split["test"]
|
|
|
|
# Create config
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config_kwargs = {
|
|
"cache_dir": model_args.cache_dir,
|
|
"revision": model_args.model_revision,
|
|
"token": model_args.token,
|
|
"trust_remote_code": model_args.trust_remote_code,
|
|
}
|
|
if model_args.config_name_or_path:
|
|
config = AutoConfig.from_pretrained(model_args.config_name_or_path, **config_kwargs)
|
|
elif model_args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
else:
|
|
config = CONFIG_MAPPING[model_args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
if model_args.config_overrides is not None:
|
|
logger.info(f"Overriding config: {model_args.config_overrides}")
|
|
config.update_from_string(model_args.config_overrides)
|
|
logger.info(f"New config: {config}")
|
|
|
|
# make sure the decoder_type is "simmim" (only relevant for BEiT)
|
|
if hasattr(config, "decoder_type"):
|
|
config.decoder_type = "simmim"
|
|
|
|
# adapt config
|
|
model_args.image_size = model_args.image_size if model_args.image_size is not None else config.image_size
|
|
model_args.patch_size = model_args.patch_size if model_args.patch_size is not None else config.patch_size
|
|
model_args.encoder_stride = (
|
|
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
|
|
)
|
|
|
|
config.update(
|
|
{
|
|
"image_size": model_args.image_size,
|
|
"patch_size": model_args.patch_size,
|
|
"encoder_stride": model_args.encoder_stride,
|
|
}
|
|
)
|
|
|
|
# create image processor
|
|
if model_args.image_processor_name:
|
|
image_processor = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **config_kwargs)
|
|
elif model_args.model_name_or_path:
|
|
image_processor = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
else:
|
|
IMAGE_PROCESSOR_TYPES = {
|
|
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
|
|
}
|
|
image_processor = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
|
|
|
|
# create model
|
|
if model_args.model_name_or_path:
|
|
model = AutoModelForMaskedImageModeling.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelForMaskedImageModeling.from_config(config, trust_remote_code=model_args.trust_remote_code)
|
|
|
|
if training_args.do_train:
|
|
column_names = ds["train"].column_names
|
|
else:
|
|
column_names = ds["validation"].column_names
|
|
|
|
if data_args.image_column_name is not None:
|
|
image_column_name = data_args.image_column_name
|
|
elif "image" in column_names:
|
|
image_column_name = "image"
|
|
elif "img" in column_names:
|
|
image_column_name = "img"
|
|
else:
|
|
image_column_name = column_names[0]
|
|
|
|
# transformations as done in original SimMIM paper
|
|
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
|
|
transforms = Compose(
|
|
[
|
|
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
|
RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)),
|
|
RandomHorizontalFlip(),
|
|
ToTensor(),
|
|
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
|
|
]
|
|
)
|
|
|
|
# create mask generator
|
|
mask_generator = MaskGenerator(
|
|
input_size=model_args.image_size,
|
|
mask_patch_size=data_args.mask_patch_size,
|
|
model_patch_size=model_args.patch_size,
|
|
mask_ratio=data_args.mask_ratio,
|
|
)
|
|
|
|
def preprocess_images(examples):
|
|
"""Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating
|
|
which patches to mask."""
|
|
|
|
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
|
|
examples["mask"] = [mask_generator() for i in range(len(examples[image_column_name]))]
|
|
|
|
return examples
|
|
|
|
if training_args.do_train:
|
|
if "train" not in ds:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
if data_args.max_train_samples is not None:
|
|
ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
|
# Set the training transforms
|
|
ds["train"].set_transform(preprocess_images)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in ds:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
if data_args.max_eval_samples is not None:
|
|
ds["validation"] = (
|
|
ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
|
)
|
|
# Set the validation transforms
|
|
ds["validation"].set_transform(preprocess_images)
|
|
|
|
# Initialize our trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=ds["train"] if training_args.do_train else None,
|
|
eval_dataset=ds["validation"] if training_args.do_eval else None,
|
|
tokenizer=image_processor,
|
|
data_collator=collate_fn,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "masked-image-modeling",
|
|
"dataset": data_args.dataset_name,
|
|
"tags": ["masked-image-modeling"],
|
|
}
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|