583 lines
24 KiB
Python
583 lines
24 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
|
|
|
The script can be used to train CLIP like models for languages other than English by using
|
|
a text encoder pre-trained in the desired language. Currently this script supports the following vision
|
|
and text models:
|
|
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
|
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from PIL import Image
|
|
from torchvision.io import ImageReadMode, read_image
|
|
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoImageProcessor,
|
|
AutoModel,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
freeze_vision_model: bool = field(
|
|
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."}
|
|
)
|
|
freeze_text_model: bool = field(
|
|
default=False, metadata={"help": "Whether to freeze the text model parameters or not."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."})
|
|
image_column: Optional[str] = field(
|
|
default="image_path",
|
|
metadata={"help": "The name of the column in the datasets containing the full image file paths."},
|
|
)
|
|
caption_column: Optional[str] = field(
|
|
default="caption",
|
|
metadata={"help": "The name of the column in the datasets containing the image captions."},
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input testing data file (a jsonlines file)."},
|
|
)
|
|
max_seq_length: Optional[int] = field(
|
|
default=128,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension == "json", "`validation_file` should be a json file."
|
|
|
|
|
|
dataset_name_mapping = {
|
|
"image_caption_dataset.py": ("image_path", "caption"),
|
|
}
|
|
|
|
|
|
# We use torchvision for faster image pre-processing. The transforms are implemented as nn.Module,
|
|
# so we jit it to be faster.
|
|
class Transform(torch.nn.Module):
|
|
def __init__(self, image_size, mean, std):
|
|
super().__init__()
|
|
self.transforms = torch.nn.Sequential(
|
|
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
|
CenterCrop(image_size),
|
|
ConvertImageDtype(torch.float),
|
|
Normalize(mean, std),
|
|
)
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
"""`x` should be an instance of `PIL.Image.Image`"""
|
|
with torch.no_grad():
|
|
x = self.transforms(x)
|
|
return x
|
|
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long)
|
|
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
|
|
return {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"return_loss": True,
|
|
}
|
|
|
|
|
|
def main():
|
|
# 1. Parse input arguments
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_clip", model_args, data_args)
|
|
|
|
# 2. Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# 3. Detecting last checkpoint and eventually continue from last checkpoint
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# 4. Load dataset
|
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files this script will use the first column for the full image path and the second column for the
|
|
# captions (unless you specify column names for this with the `image_column` and `caption_column` arguments).
|
|
#
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
dataset = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
keep_in_memory=False,
|
|
data_dir=data_args.data_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if data_args.test_file is not None:
|
|
data_files["test"] = data_args.test_file
|
|
extension = data_args.test_file.split(".")[-1]
|
|
dataset = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
# 5. Load pretrained model, tokenizer, and image processor
|
|
if model_args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
elif model_args.model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
# Load image_processor, in this script we only use this to get the mean and std for normalization.
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
model_args.image_processor_name or model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
model = AutoModel.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
config = model.config
|
|
|
|
def _freeze_params(module):
|
|
for param in module.parameters():
|
|
param.requires_grad = False
|
|
|
|
if model_args.freeze_vision_model:
|
|
_freeze_params(model.vision_model)
|
|
|
|
if model_args.freeze_text_model:
|
|
_freeze_params(model.text_model)
|
|
|
|
# set seed for torch dataloaders
|
|
set_seed(training_args.seed)
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize inputs and targets.
|
|
if training_args.do_train:
|
|
column_names = dataset["train"].column_names
|
|
elif training_args.do_eval:
|
|
column_names = dataset["validation"].column_names
|
|
elif training_args.do_predict:
|
|
column_names = dataset["test"].column_names
|
|
else:
|
|
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
|
|
return
|
|
|
|
# 6. Get the column names for input/target.
|
|
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None)
|
|
if data_args.image_column is None:
|
|
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
|
else:
|
|
image_column = data_args.image_column
|
|
if image_column not in column_names:
|
|
raise ValueError(
|
|
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
if data_args.caption_column is None:
|
|
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
|
else:
|
|
caption_column = data_args.caption_column
|
|
if caption_column not in column_names:
|
|
raise ValueError(
|
|
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}"
|
|
)
|
|
|
|
# 7. Preprocessing the datasets.
|
|
# Initialize torchvision transforms and jit it for faster processing.
|
|
image_transformations = Transform(
|
|
config.vision_config.image_size, image_processor.image_mean, image_processor.image_std
|
|
)
|
|
image_transformations = torch.jit.script(image_transformations)
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to tokenize input captions and transform the images.
|
|
def tokenize_captions(examples):
|
|
captions = list(examples[caption_column])
|
|
text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True)
|
|
examples["input_ids"] = text_inputs.input_ids
|
|
examples["attention_mask"] = text_inputs.attention_mask
|
|
return examples
|
|
|
|
def transform_images(examples):
|
|
images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[image_column]]
|
|
examples["pixel_values"] = [image_transformations(image) for image in images]
|
|
return examples
|
|
|
|
def filter_corrupt_images(examples):
|
|
"""remove problematic images"""
|
|
valid_images = []
|
|
for image_file in examples[image_column]:
|
|
try:
|
|
Image.open(image_file)
|
|
valid_images.append(True)
|
|
except Exception:
|
|
valid_images.append(False)
|
|
return valid_images
|
|
|
|
if training_args.do_train:
|
|
if "train" not in dataset:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = dataset["train"]
|
|
if data_args.max_train_samples is not None:
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
|
|
train_dataset = train_dataset.filter(
|
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers
|
|
)
|
|
train_dataset = train_dataset.map(
|
|
function=tokenize_captions,
|
|
batched=True,
|
|
remove_columns=[col for col in column_names if col != image_column],
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on train dataset",
|
|
)
|
|
|
|
# Transform images on the fly as doing it on the whole dataset takes too much time.
|
|
train_dataset.set_transform(transform_images)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in dataset:
|
|
raise ValueError("--do_eval requires a train validation")
|
|
eval_dataset = dataset["validation"]
|
|
if data_args.max_eval_samples is not None:
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
|
|
eval_dataset = eval_dataset.filter(
|
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers
|
|
)
|
|
eval_dataset = eval_dataset.map(
|
|
function=tokenize_captions,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=[col for col in column_names if col != image_column],
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on validation dataset",
|
|
)
|
|
|
|
# Transform images on the fly as doing it on the whole dataset takes too much time.
|
|
eval_dataset.set_transform(transform_images)
|
|
|
|
if training_args.do_predict:
|
|
if "test" not in dataset:
|
|
raise ValueError("--do_predict requires a test dataset")
|
|
test_dataset = dataset["test"]
|
|
if data_args.max_eval_samples is not None:
|
|
max_eval_samples = min(len(test_dataset), data_args.max_eval_samples)
|
|
test_dataset = test_dataset.select(range(max_eval_samples))
|
|
|
|
test_dataset = test_dataset.filter(
|
|
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers
|
|
)
|
|
test_dataset = test_dataset.map(
|
|
function=tokenize_captions,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=[col for col in column_names if col != image_column],
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
desc="Running tokenizer on test dataset",
|
|
)
|
|
|
|
# Transform images on the fly as doing it on the whole dataset takes too much time.
|
|
test_dataset.set_transform(transform_images)
|
|
|
|
# 8. Initialize our trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset if training_args.do_train else None,
|
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
|
data_collator=collate_fn,
|
|
)
|
|
|
|
# 9. Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
image_processor.save_pretrained(training_args.output_dir)
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# 10. Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# 11. Write Training Stats and push to hub.
|
|
finetuned_from = model_args.model_name_or_path
|
|
# If from a local directory, don't set `finetuned_from` as this is required to be a valid repo. id on the Hub.
|
|
if os.path.isdir(finetuned_from):
|
|
finetuned_from = None
|
|
kwargs = {"finetuned_from": finetuned_from, "tasks": "contrastive-image-text-modeling"}
|
|
if data_args.dataset_name is not None:
|
|
kwargs["dataset_tags"] = data_args.dataset_name
|
|
if data_args.dataset_config_name is not None:
|
|
kwargs["dataset_args"] = data_args.dataset_config_name
|
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
|
|
else:
|
|
kwargs["dataset"] = data_args.dataset_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|