827 lines
34 KiB
Python
827 lines
34 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Fine-tuning a 🤗 Flax Transformers model on token classification tasks (NER, POS, CHUNKS)"""
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from dataclasses import asdict, dataclass, field
|
|
from enum import Enum
|
|
from itertools import chain
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, Optional, Tuple
|
|
|
|
import datasets
|
|
import evaluate
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import optax
|
|
from datasets import ClassLabel, load_dataset
|
|
from flax import struct, traverse_util
|
|
from flax.jax_utils import pad_shard_unpad, replicate, unreplicate
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import get_metrics, onehot, shard
|
|
from huggingface_hub import Repository, create_repo
|
|
from tqdm import tqdm
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
FlaxAutoModelForTokenClassification,
|
|
HfArgumentParser,
|
|
is_tensorboard_available,
|
|
)
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.38.0.dev0")
|
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
|
|
|
Array = Any
|
|
Dataset = datasets.arrow_dataset.Dataset
|
|
PRNGKey = Any
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments:
|
|
output_dir: str = field(
|
|
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
|
|
)
|
|
overwrite_output_dir: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Overwrite the content of the output directory. "
|
|
"Use this to continue training if output_dir points to a checkpoint directory."
|
|
)
|
|
},
|
|
)
|
|
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
|
|
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
|
|
per_device_train_batch_size: int = field(
|
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
|
|
)
|
|
per_device_eval_batch_size: int = field(
|
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
|
|
)
|
|
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
|
|
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
|
|
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
|
|
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
|
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
|
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
|
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
|
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
|
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
|
|
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
|
|
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
|
|
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
|
|
push_to_hub: bool = field(
|
|
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
|
|
)
|
|
hub_model_id: str = field(
|
|
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
|
|
)
|
|
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
|
|
|
|
def __post_init__(self):
|
|
if self.output_dir is not None:
|
|
self.output_dir = os.path.expanduser(self.output_dir)
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
|
|
the token values by removing their value.
|
|
"""
|
|
d = asdict(self)
|
|
for k, v in d.items():
|
|
if isinstance(v, Enum):
|
|
d[k] = v.value
|
|
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
|
|
d[k] = [x.value for x in v]
|
|
if k.endswith("_token"):
|
|
d[k] = f"<{k.upper()}>"
|
|
return d
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
|
|
)
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
|
|
)
|
|
test_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
|
|
)
|
|
text_column_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
|
|
)
|
|
label_column_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_seq_length: int = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. If set, sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
)
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_predict_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
label_all_tokens: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether to put the label for one word on all tokens of generated by that word or just on the "
|
|
"one (in which case the other tokens will have a padding index)."
|
|
)
|
|
},
|
|
)
|
|
return_entity_level_metrics: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
self.task_name = self.task_name.lower()
|
|
|
|
|
|
def create_train_state(
|
|
model: FlaxAutoModelForTokenClassification,
|
|
learning_rate_fn: Callable[[int], float],
|
|
num_labels: int,
|
|
training_args: TrainingArguments,
|
|
) -> train_state.TrainState:
|
|
"""Create initial training state."""
|
|
|
|
class TrainState(train_state.TrainState):
|
|
"""Train state with an Optax optimizer.
|
|
|
|
The two functions below differ depending on whether the task is classification
|
|
or regression.
|
|
|
|
Args:
|
|
logits_fn: Applied to last layer to obtain the logits.
|
|
loss_fn: Function to compute the loss.
|
|
"""
|
|
|
|
logits_fn: Callable = struct.field(pytree_node=False)
|
|
loss_fn: Callable = struct.field(pytree_node=False)
|
|
|
|
# We use Optax's "masking" functionality to not apply weight decay
|
|
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
|
# mask boolean with the same structure as the parameters.
|
|
# The mask is True for parameters that should be decayed.
|
|
def decay_mask_fn(params):
|
|
flat_params = traverse_util.flatten_dict(params)
|
|
# find out all LayerNorm parameters
|
|
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
|
|
layer_norm_named_params = {
|
|
layer[-2:]
|
|
for layer_norm_name in layer_norm_candidates
|
|
for layer in flat_params.keys()
|
|
if layer_norm_name in "".join(layer).lower()
|
|
}
|
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
|
|
return traverse_util.unflatten_dict(flat_mask)
|
|
|
|
tx = optax.adamw(
|
|
learning_rate=learning_rate_fn,
|
|
b1=training_args.adam_beta1,
|
|
b2=training_args.adam_beta2,
|
|
eps=training_args.adam_epsilon,
|
|
weight_decay=training_args.weight_decay,
|
|
mask=decay_mask_fn,
|
|
)
|
|
|
|
def cross_entropy_loss(logits, labels):
|
|
xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels))
|
|
return jnp.mean(xentropy)
|
|
|
|
return TrainState.create(
|
|
apply_fn=model.__call__,
|
|
params=model.params,
|
|
tx=tx,
|
|
logits_fn=lambda logits: logits.argmax(-1),
|
|
loss_fn=cross_entropy_loss,
|
|
)
|
|
|
|
|
|
def create_learning_rate_fn(
|
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
|
) -> Callable[[int], jnp.ndarray]:
|
|
"""Returns a linear warmup, linear_decay learning rate function."""
|
|
steps_per_epoch = train_ds_size // train_batch_size
|
|
num_train_steps = steps_per_epoch * num_train_epochs
|
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
|
decay_fn = optax.linear_schedule(
|
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
|
)
|
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
|
return schedule_fn
|
|
|
|
|
|
def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int):
|
|
"""Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices."""
|
|
steps_per_epoch = len(dataset) // batch_size
|
|
perms = jax.random.permutation(rng, len(dataset))
|
|
perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
|
perms = perms.reshape((steps_per_epoch, batch_size))
|
|
|
|
for perm in perms:
|
|
batch = dataset[perm]
|
|
batch = {k: np.array(v) for k, v in batch.items()}
|
|
batch = shard(batch)
|
|
|
|
yield batch
|
|
|
|
|
|
def eval_data_collator(dataset: Dataset, batch_size: int):
|
|
"""Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop."""
|
|
batch_idx = np.arange(len(dataset))
|
|
|
|
steps_per_epoch = math.ceil(len(dataset) / batch_size)
|
|
batch_idx = np.array_split(batch_idx, steps_per_epoch)
|
|
|
|
for idx in batch_idx:
|
|
batch = dataset[idx]
|
|
batch = {k: np.array(v) for k, v in batch.items()}
|
|
|
|
yield batch
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if model_args.use_auth_token is not None:
|
|
warnings.warn(
|
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
|
|
FutureWarning,
|
|
)
|
|
if model_args.token is not None:
|
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
|
model_args.token = model_args.use_auth_token
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_ner", model_args, data_args, framework="flax")
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# Handle the repository creation
|
|
if training_args.push_to_hub:
|
|
# Retrieve of infer repo_name
|
|
repo_name = training_args.hub_model_id
|
|
if repo_name is None:
|
|
repo_name = Path(training_args.output_dir).absolute().name
|
|
# Create repo and retrieve repo_id
|
|
repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
|
|
# Clone repo locally
|
|
repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
|
|
# 'tokens' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
else:
|
|
# Loading the dataset from local csv or json file.
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1]
|
|
raw_datasets = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
# See more about loading any type of standard or custom dataset at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
if raw_datasets["train"] is not None:
|
|
column_names = raw_datasets["train"].column_names
|
|
features = raw_datasets["train"].features
|
|
else:
|
|
column_names = raw_datasets["validation"].column_names
|
|
features = raw_datasets["validation"].features
|
|
|
|
if data_args.text_column_name is not None:
|
|
text_column_name = data_args.text_column_name
|
|
elif "tokens" in column_names:
|
|
text_column_name = "tokens"
|
|
else:
|
|
text_column_name = column_names[0]
|
|
|
|
if data_args.label_column_name is not None:
|
|
label_column_name = data_args.label_column_name
|
|
elif f"{data_args.task_name}_tags" in column_names:
|
|
label_column_name = f"{data_args.task_name}_tags"
|
|
else:
|
|
label_column_name = column_names[1]
|
|
|
|
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
|
|
# unique labels.
|
|
def get_label_list(labels):
|
|
unique_labels = set()
|
|
for label in labels:
|
|
unique_labels = unique_labels | set(label)
|
|
label_list = list(unique_labels)
|
|
label_list.sort()
|
|
return label_list
|
|
|
|
if isinstance(features[label_column_name].feature, ClassLabel):
|
|
label_list = features[label_column_name].feature.names
|
|
# No need to convert the labels since they are already ints.
|
|
label_to_id = {i: i for i in range(len(label_list))}
|
|
else:
|
|
label_list = get_label_list(raw_datasets["train"][label_column_name])
|
|
label_to_id = {l: i for i, l in enumerate(label_list)}
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
label2id=label_to_id,
|
|
id2label={i: l for l, i in label_to_id.items()},
|
|
finetuning_task=data_args.task_name,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
|
|
if config.model_type in {"gpt2", "roberta"}:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
add_prefix_space=True,
|
|
)
|
|
else:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = FlaxAutoModelForTokenClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
# Preprocessing the datasets
|
|
# Tokenize all texts and align the labels with them.
|
|
def tokenize_and_align_labels(examples):
|
|
tokenized_inputs = tokenizer(
|
|
examples[text_column_name],
|
|
max_length=data_args.max_seq_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
|
|
is_split_into_words=True,
|
|
)
|
|
|
|
labels = []
|
|
|
|
for i, label in enumerate(examples[label_column_name]):
|
|
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
|
previous_word_idx = None
|
|
label_ids = []
|
|
for word_idx in word_ids:
|
|
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
|
|
# ignored in the loss function.
|
|
if word_idx is None:
|
|
label_ids.append(-100)
|
|
# We set the label for the first token of each word.
|
|
elif word_idx != previous_word_idx:
|
|
label_ids.append(label_to_id[label[word_idx]])
|
|
# For the other tokens in a word, we set the label to either the current label or -100, depending on
|
|
# the label_all_tokens flag.
|
|
else:
|
|
label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
|
|
previous_word_idx = word_idx
|
|
|
|
labels.append(label_ids)
|
|
tokenized_inputs["labels"] = labels
|
|
return tokenized_inputs
|
|
|
|
processed_raw_datasets = raw_datasets.map(
|
|
tokenize_and_align_labels,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
remove_columns=raw_datasets["train"].column_names,
|
|
desc="Running tokenizer on dataset",
|
|
)
|
|
|
|
train_dataset = processed_raw_datasets["train"]
|
|
eval_dataset = processed_raw_datasets["validation"]
|
|
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
# Define a summary writer
|
|
has_tensorboard = is_tensorboard_available()
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
try:
|
|
from flax.metrics.tensorboard import SummaryWriter
|
|
|
|
summary_writer = SummaryWriter(training_args.output_dir)
|
|
summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)})
|
|
except ImportError as ie:
|
|
has_tensorboard = False
|
|
logger.warning(
|
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
|
)
|
|
else:
|
|
logger.warning(
|
|
"Unable to display metrics through TensorBoard because the package is not installed: "
|
|
"Please run pip install tensorboard to enable."
|
|
)
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
|
summary_writer.scalar("train_time", train_time, step)
|
|
|
|
train_metrics = get_metrics(train_metrics)
|
|
for key, vals in train_metrics.items():
|
|
tag = f"train_{key}"
|
|
for i, val in enumerate(vals):
|
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step):
|
|
for metric_name, value in eval_metrics.items():
|
|
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
|
|
|
num_epochs = int(training_args.num_train_epochs)
|
|
rng = jax.random.PRNGKey(training_args.seed)
|
|
dropout_rngs = jax.random.split(rng, jax.local_device_count())
|
|
|
|
train_batch_size = training_args.per_device_train_batch_size * jax.local_device_count()
|
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
|
eval_batch_size = training_args.per_device_eval_batch_size * jax.local_device_count()
|
|
|
|
learning_rate_fn = create_learning_rate_fn(
|
|
len(train_dataset),
|
|
train_batch_size,
|
|
training_args.num_train_epochs,
|
|
training_args.warmup_steps,
|
|
training_args.learning_rate,
|
|
)
|
|
|
|
state = create_train_state(model, learning_rate_fn, num_labels=num_labels, training_args=training_args)
|
|
|
|
# define step functions
|
|
def train_step(
|
|
state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey
|
|
) -> Tuple[train_state.TrainState, float]:
|
|
"""Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`."""
|
|
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
|
targets = batch.pop("labels")
|
|
|
|
def loss_fn(params):
|
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
|
loss = state.loss_fn(logits, targets)
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(loss_fn)
|
|
loss, grad = grad_fn(state.params)
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
new_state = state.apply_gradients(grads=grad)
|
|
metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch")
|
|
return new_state, metrics, new_dropout_rng
|
|
|
|
p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
|
|
|
|
def eval_step(state, batch):
|
|
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
|
|
return state.logits_fn(logits)
|
|
|
|
p_eval_step = jax.pmap(eval_step, axis_name="batch")
|
|
|
|
metric = evaluate.load("seqeval", cache_dir=model_args.cache_dir)
|
|
|
|
def get_labels(y_pred, y_true):
|
|
# Transform predictions and references tensos to numpy arrays
|
|
|
|
# Remove ignored index (special tokens)
|
|
true_predictions = [
|
|
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
true_labels = [
|
|
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
return true_predictions, true_labels
|
|
|
|
def compute_metrics():
|
|
results = metric.compute()
|
|
if data_args.return_entity_level_metrics:
|
|
# Unpack nested dictionaries
|
|
final_results = {}
|
|
for key, value in results.items():
|
|
if isinstance(value, dict):
|
|
for n, v in value.items():
|
|
final_results[f"{key}_{n}"] = v
|
|
else:
|
|
final_results[key] = value
|
|
return final_results
|
|
else:
|
|
return {
|
|
"precision": results["overall_precision"],
|
|
"recall": results["overall_recall"],
|
|
"f1": results["overall_f1"],
|
|
"accuracy": results["overall_accuracy"],
|
|
}
|
|
|
|
logger.info(f"===== Starting training ({num_epochs} epochs) =====")
|
|
train_time = 0
|
|
|
|
# make sure weights are replicated on each device
|
|
state = replicate(state)
|
|
|
|
train_time = 0
|
|
step_per_epoch = len(train_dataset) // train_batch_size
|
|
total_steps = step_per_epoch * num_epochs
|
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
|
for epoch in epochs:
|
|
train_start = time.time()
|
|
train_metrics = []
|
|
|
|
# Create sampling rng
|
|
rng, input_rng = jax.random.split(rng)
|
|
|
|
# train
|
|
for step, batch in enumerate(
|
|
tqdm(
|
|
train_data_collator(input_rng, train_dataset, train_batch_size),
|
|
total=step_per_epoch,
|
|
desc="Training...",
|
|
position=1,
|
|
)
|
|
):
|
|
state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs)
|
|
train_metrics.append(train_metric)
|
|
|
|
cur_step = (epoch * step_per_epoch) + (step + 1)
|
|
|
|
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
|
# Save metrics
|
|
train_metric = unreplicate(train_metric)
|
|
train_time += time.time() - train_start
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
|
|
|
epochs.write(
|
|
f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:"
|
|
f" {train_metric['learning_rate']})"
|
|
)
|
|
|
|
train_metrics = []
|
|
|
|
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
|
eval_metrics = {}
|
|
# evaluate
|
|
for batch in tqdm(
|
|
eval_data_collator(eval_dataset, eval_batch_size),
|
|
total=math.ceil(len(eval_dataset) / eval_batch_size),
|
|
desc="Evaluating ...",
|
|
position=2,
|
|
):
|
|
labels = batch.pop("labels")
|
|
predictions = pad_shard_unpad(p_eval_step)(
|
|
state, batch, min_device_batch=per_device_eval_batch_size
|
|
)
|
|
predictions = np.array(predictions)
|
|
labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
|
|
preds, refs = get_labels(predictions, labels)
|
|
metric.add_batch(
|
|
predictions=preds,
|
|
references=refs,
|
|
)
|
|
|
|
eval_metrics = compute_metrics()
|
|
|
|
if data_args.return_entity_level_metrics:
|
|
logger.info(f"Step... ({cur_step}/{total_steps} | Validation metrics: {eval_metrics}")
|
|
else:
|
|
logger.info(
|
|
f"Step... ({cur_step}/{total_steps} | Validation f1: {eval_metrics['f1']}, Validation Acc:"
|
|
f" {eval_metrics['accuracy']})"
|
|
)
|
|
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
|
|
|
if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps):
|
|
# save checkpoint after each epoch and push checkpoint to the hub
|
|
if jax.process_index() == 0:
|
|
params = jax.device_get(unreplicate(state.params))
|
|
model.save_pretrained(training_args.output_dir, params=params)
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
|
|
epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}"
|
|
|
|
# Eval after training
|
|
if training_args.do_eval:
|
|
eval_metrics = {}
|
|
eval_loader = eval_data_collator(eval_dataset, eval_batch_size)
|
|
for batch in tqdm(eval_loader, total=len(eval_dataset) // eval_batch_size, desc="Evaluating ...", position=2):
|
|
labels = batch.pop("labels")
|
|
predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size)
|
|
predictions = np.array(predictions)
|
|
labels[np.array(chain(*batch["attention_mask"])) == 0] = -100
|
|
preds, refs = get_labels(predictions, labels)
|
|
metric.add_batch(predictions=preds, references=refs)
|
|
|
|
eval_metrics = compute_metrics()
|
|
|
|
if jax.process_index() == 0:
|
|
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
|
|
path = os.path.join(training_args.output_dir, "eval_results.json")
|
|
with open(path, "w") as f:
|
|
json.dump(eval_metrics, f, indent=4, sort_keys=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|