287 lines
13 KiB
Python
287 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 HuggingFace Inc..
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
isort:skip_file
|
|
"""
|
|
|
|
import os
|
|
import pickle
|
|
import tempfile
|
|
import unittest
|
|
from typing import Callable, Optional
|
|
|
|
import numpy as np
|
|
|
|
from transformers import (
|
|
BatchEncoding,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
PreTrainedTokenizer,
|
|
PreTrainedTokenizerFast,
|
|
TensorType,
|
|
TokenSpan,
|
|
is_tokenizers_available,
|
|
)
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow
|
|
|
|
|
|
if is_tokenizers_available():
|
|
from tokenizers import Tokenizer
|
|
from tokenizers.models import WordPiece
|
|
|
|
|
|
class TokenizerUtilsTest(unittest.TestCase):
|
|
def check_tokenizer_from_pretrained(self, tokenizer_class):
|
|
s3_models = list(tokenizer_class.max_model_input_sizes.keys())
|
|
for model_name in s3_models[:1]:
|
|
tokenizer = tokenizer_class.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, tokenizer_class)
|
|
self.assertIsInstance(tokenizer, PreTrainedTokenizer)
|
|
|
|
for special_tok in tokenizer.all_special_tokens:
|
|
self.assertIsInstance(special_tok, str)
|
|
special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
|
|
self.assertIsInstance(special_tok_id, int)
|
|
|
|
def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
|
|
batch_encoding_str = pickle.dumps(be_original)
|
|
self.assertIsNotNone(batch_encoding_str)
|
|
|
|
be_restored = pickle.loads(batch_encoding_str)
|
|
|
|
# Ensure is_fast is correctly restored
|
|
self.assertEqual(be_restored.is_fast, be_original.is_fast)
|
|
|
|
# Ensure encodings are potentially correctly restored
|
|
if be_original.is_fast:
|
|
self.assertIsNotNone(be_restored.encodings)
|
|
else:
|
|
self.assertIsNone(be_restored.encodings)
|
|
|
|
# Ensure the keys are the same
|
|
for original_v, restored_v in zip(be_original.values(), be_restored.values()):
|
|
if equal_op:
|
|
self.assertTrue(equal_op(restored_v, original_v))
|
|
else:
|
|
self.assertEqual(restored_v, original_v)
|
|
|
|
@slow
|
|
def test_pretrained_tokenizers(self):
|
|
self.check_tokenizer_from_pretrained(GPT2Tokenizer)
|
|
|
|
def test_tensor_type_from_str(self):
|
|
self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
|
|
self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
|
|
self.assertEqual(TensorType("np"), TensorType.NUMPY)
|
|
|
|
@require_tokenizers
|
|
def test_batch_encoding_pickle(self):
|
|
import numpy as np
|
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
# Python no tensor
|
|
with self.subTest("BatchEncoding (Python, return_tensors=None)"):
|
|
self.assert_dump_and_restore(tokenizer_p("Small example to encode"))
|
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
|
|
)
|
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
|
|
self.assert_dump_and_restore(tokenizer_r("Small example to encode"))
|
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
|
|
)
|
|
|
|
@require_tf
|
|
@require_tokenizers
|
|
def test_batch_encoding_pickle_tf(self):
|
|
import tensorflow as tf
|
|
|
|
def tf_array_equals(t1, t2):
|
|
return tf.reduce_all(tf.equal(t1, t2))
|
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
|
|
)
|
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
|
|
)
|
|
|
|
@require_torch
|
|
@require_tokenizers
|
|
def test_batch_encoding_pickle_pt(self):
|
|
import torch
|
|
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
|
|
)
|
|
|
|
with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
|
|
self.assert_dump_and_restore(
|
|
tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
|
|
)
|
|
|
|
@require_tokenizers
|
|
def test_batch_encoding_is_fast(self):
|
|
tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
with self.subTest("Python Tokenizer"):
|
|
self.assertFalse(tokenizer_p("Small example to_encode").is_fast)
|
|
|
|
with self.subTest("Rust Tokenizer"):
|
|
self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
|
|
|
|
@require_tokenizers
|
|
def test_batch_encoding_word_to_tokens(self):
|
|
tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
|
|
encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)
|
|
|
|
self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
|
|
self.assertEqual(encoded.word_to_tokens(1), None)
|
|
self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))
|
|
|
|
def test_batch_encoding_with_labels(self):
|
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="np")
|
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (2,))
|
|
# test converting the converted
|
|
with CaptureStderr() as cs:
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="np")
|
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
|
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
|
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (1,))
|
|
|
|
@require_torch
|
|
def test_batch_encoding_with_labels_pt(self):
|
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
|
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (2,))
|
|
# test converting the converted
|
|
with CaptureStderr() as cs:
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt")
|
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
|
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
|
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (1,))
|
|
|
|
@require_tf
|
|
def test_batch_encoding_with_labels_tf(self):
|
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
|
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (2,))
|
|
# test converting the converted
|
|
with CaptureStderr() as cs:
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf")
|
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
|
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
|
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (1,))
|
|
|
|
@require_flax
|
|
def test_batch_encoding_with_labels_jax(self):
|
|
batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
|
|
self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (2,))
|
|
# test converting the converted
|
|
with CaptureStderr() as cs:
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax")
|
|
self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
|
|
|
|
batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
|
|
tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
|
|
self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
|
|
self.assertEqual(tensor_batch["labels"].shape, (1,))
|
|
|
|
def test_padding_accepts_tensors(self):
|
|
features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
batch = tokenizer.pad(features, padding=True)
|
|
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
|
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
batch = tokenizer.pad(features, padding=True, return_tensors="np")
|
|
self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
|
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
|
|
@require_torch
|
|
def test_padding_accepts_tensors_pt(self):
|
|
import torch
|
|
|
|
features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
batch = tokenizer.pad(features, padding=True)
|
|
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
|
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
batch = tokenizer.pad(features, padding=True, return_tensors="pt")
|
|
self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
|
|
self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
|
|
@require_tf
|
|
def test_padding_accepts_tensors_tf(self):
|
|
import tensorflow as tf
|
|
|
|
features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
|
|
|
|
batch = tokenizer.pad(features, padding=True)
|
|
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
|
|
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
batch = tokenizer.pad(features, padding=True, return_tensors="tf")
|
|
self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
|
|
self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
|
|
|
|
@require_tokenizers
|
|
def test_instantiation_from_tokenizers(self):
|
|
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
|
|
PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)
|
|
|
|
@require_tokenizers
|
|
def test_instantiation_from_tokenizers_json_file(self):
|
|
bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
|
|
PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))
|