371 lines
13 KiB
Python
371 lines
13 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import itertools
|
|
import os
|
|
import subprocess
|
|
from os.path import dirname
|
|
|
|
from parameterized import parameterized
|
|
|
|
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
execute_subprocess_async,
|
|
get_gpu_count,
|
|
get_tests_dir,
|
|
require_deepspeed,
|
|
require_torch_gpu,
|
|
slow,
|
|
)
|
|
from transformers.trainer_utils import set_seed
|
|
|
|
|
|
if is_torch_available():
|
|
from tests.trainer.test_trainer import ( # noqa
|
|
RegressionModelConfig,
|
|
RegressionPreTrainedModel,
|
|
get_regression_trainer,
|
|
)
|
|
|
|
|
|
set_seed(42)
|
|
|
|
FIXTURE_DIRECTORY = get_tests_dir("fixtures")
|
|
ROOT_DIRECTORY = os.path.join(dirname(get_tests_dir()))
|
|
DS_TESTS_DIRECTORY = dirname(os.path.abspath(__file__))
|
|
|
|
# default torch.distributed port
|
|
DEFAULT_MASTER_PORT = "10999"
|
|
|
|
T5_SMALL = "google-t5/t5-small"
|
|
|
|
# *** Working Models ***
|
|
ALBERT_TINY = "hf-internal-testing/tiny-albert"
|
|
BART_TINY = "sshleifer/bart-tiny-random"
|
|
BERT_TINY = "hf-internal-testing/tiny-bert"
|
|
BIGBIRD_PEGASUS_TINY = "hf-internal-testing/tiny-random-bigbird_pegasus"
|
|
BIG_BIRD_TINY = "hf-internal-testing/tiny-random-big_bird"
|
|
BLENDERBOT_TINY = "hf-internal-testing/tiny-random-blenderbot"
|
|
BLOOM_TINY = "bigscience/bigscience-small-testing"
|
|
DEBERTA_TINY = "hf-internal-testing/tiny-random-deberta"
|
|
DEBERTA_V2_TINY = "hf-internal-testing/tiny-random-deberta-v2"
|
|
DISTILBERT_TINY = "sshleifer/tiny-distilbert-base-cased"
|
|
ELECTRA_TINY = "hf-internal-testing/tiny-electra"
|
|
FLAUBERT_TINY = "hf-internal-testing/tiny-random-flaubert"
|
|
FSMT_TINY = "stas/tiny-wmt19-en-de"
|
|
FUNNEL_TINY = "hf-internal-testing/tiny-random-funnel"
|
|
GPT2_TINY = "sshleifer/tiny-gpt2"
|
|
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
|
|
GPT_NEO_TINY = "hf-internal-testing/tiny-random-gpt_neo"
|
|
LAYOUTLM_TINY = "hf-internal-testing/tiny-layoutlm"
|
|
LED_TINY = "hf-internal-testing/tiny-random-led"
|
|
LONGFORMER_TINY = "hf-internal-testing/tiny-random-longformer"
|
|
M2M_100_TINY = "stas/tiny-m2m_100" # hf tiny model is unsuitable
|
|
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
|
|
MBART_TINY = "sshleifer/tiny-mbart"
|
|
MOBILEBERT_TINY = "hf-internal-testing/tiny-random-mobilebert"
|
|
MPNET_TINY = "hf-internal-testing/tiny-random-mpnet"
|
|
PEGASUS_TINY = "stas/pegasus-cnn_dailymail-tiny-random"
|
|
PROPHETNET_TINY = "hf-internal-testing/tiny-random-prophetnet"
|
|
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"
|
|
SQUEEZEBERT_TINY = "hf-internal-testing/tiny-random-squeezebert"
|
|
T5_TINY = "patrickvonplaten/t5-tiny-random"
|
|
T5_V1_TINY = "hf-internal-testing/tiny-random-t5-v1.1"
|
|
VIT_TINY = "hf-internal-testing/tiny-random-vit"
|
|
XLM_ROBERTA_TINY = "hf-internal-testing/tiny-xlm-roberta"
|
|
XLNET_TINY = "sshleifer/tiny-xlnet-base-cased"
|
|
|
|
|
|
# *** To Fix ***
|
|
|
|
|
|
# *** tiny model issues ***
|
|
# missing model files:
|
|
MT5_TINY = "hf-internal-testing/tiny-random-mt5"
|
|
CAMEMBERT_TINY = "hf-internal-testing/tiny-random-camembert"
|
|
OPENAI_GPT_TINY = "hf-internal-testing/tiny-random-openai-gpt"
|
|
|
|
# missing tokenizer files
|
|
CONVBERT_TINY = "hf-internal-testing/tiny-random-convbert"
|
|
LAYOUTLMV2_TINY = "hf-internal-testing/tiny-random-layoutlmv2"
|
|
HUBERT_TINY = "hf-internal-testing/tiny-random-hubert"
|
|
|
|
# issues with tokenizer
|
|
CTRL_TINY = "hf-internal-testing/tiny-random-ctrl"
|
|
TRANSFO_XL_TINY = "hf-internal-testing/tiny-random-transfo-xl" # same as Salesforce/ctrl
|
|
|
|
# other issues with tiny models
|
|
IBERT_TINY = "hf-internal-testing/tiny-random-ibert" # multiple issues with either mlm/qa/clas
|
|
REFORMER_TINY = "hf-internal-testing/tiny-random-reformer" # multiple issues with either mlm/qa/clas
|
|
|
|
# *** Lacking official examples to test with ***
|
|
# or not working with examples
|
|
DPR_TINY = "hf-internal-testing/tiny-random-dpr"
|
|
# - "dpr" examples/research_projects/rag-end2end-retriever/
|
|
RAG_TINY = "hf-internal-testing/tiny-random-rag"
|
|
# - "rag" research_projects
|
|
LUKE_TINY = ""
|
|
# - "luke" Entities classes - no plan to make such example
|
|
LXMERT_TINY = "hf-internal-testing/tiny-random-lxmert"
|
|
# - "lxmert" doesn't work with run_qa.py
|
|
CLIP_TINY = "hf-internal-testing/tiny-random-clip"
|
|
# - "clip" nothing under pytorch examples - XXX: Suraj is working on adding some - check by end of Sep
|
|
SPEECH_TO_TEXT_TINY = "hf-internal-testing/tiny-random-speech_to_text"
|
|
# - "speech_to_text", nothing under pytorch examples
|
|
|
|
|
|
# *** Reactive mode ***
|
|
# models with low usage, unstable API, things about to change - do nothing about the following until someone runs into a problem
|
|
TAPAS_TINY = "hf-internal-testing/tiny-random-tapas"
|
|
# additional notes on tapas
|
|
# 1. "Table must be of type pd.DataFrame" failure
|
|
|
|
|
|
# TODO: new models to add:
|
|
#
|
|
|
|
|
|
def get_launcher(distributed=False):
|
|
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
|
|
# - it won't be able to handle that
|
|
# 2. for now testing with just 2 gpus max (since some quality tests may give different
|
|
# results with mode gpus because we use very little data)
|
|
num_gpus = min(2, get_gpu_count()) if distributed else 1
|
|
master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
|
|
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
|
|
|
|
|
|
def make_task_cmds():
|
|
data_dir_samples = f"{FIXTURE_DIRECTORY}/tests_samples"
|
|
data_dir_wmt = f"{data_dir_samples}/wmt_en_ro"
|
|
data_dir_xsum = f"{data_dir_samples}/xsum"
|
|
args_main = """
|
|
--do_train
|
|
--max_train_samples 4
|
|
--per_device_train_batch_size 2
|
|
--num_train_epochs 1
|
|
--fp16
|
|
--report_to none
|
|
--overwrite_output_dir
|
|
""".split()
|
|
|
|
# try to cover as many models as possible once (it's enough to run on one task per model)
|
|
# but need a tiny model for each
|
|
#
|
|
# should have "{model_type.upper()}_TINY" corresponding vars defined, e.g., T5_TINY, etc.
|
|
tasks2models = {
|
|
"trans": [
|
|
"bart",
|
|
"fsmt",
|
|
"m2m_100",
|
|
"marian",
|
|
"mbart",
|
|
"t5",
|
|
"t5_v1",
|
|
# "mt5", missing model files
|
|
],
|
|
"sum": [
|
|
"pegasus",
|
|
],
|
|
"clm": [
|
|
"big_bird",
|
|
"bigbird_pegasus",
|
|
"blenderbot",
|
|
"bloom",
|
|
"gpt2",
|
|
"gpt_neo",
|
|
"gptj",
|
|
"xlm-roberta",
|
|
"prophetnet",
|
|
# "camembert", missing model files
|
|
],
|
|
"mlm": [
|
|
"albert",
|
|
"deberta",
|
|
"deberta-v2",
|
|
"distilbert",
|
|
"electra",
|
|
"flaubert",
|
|
"funnel",
|
|
"layoutlm",
|
|
# "reformer", # multiple issues with either mlm/qa/clas
|
|
],
|
|
"qa": [
|
|
"led",
|
|
"longformer",
|
|
"mobilebert",
|
|
"mpnet",
|
|
"roberta",
|
|
"squeezebert",
|
|
# "convbert", # missing tokenizer files
|
|
# "layoutlmv2", missing model files
|
|
],
|
|
"clas": [
|
|
"bert",
|
|
"xlnet",
|
|
# "hubert", # missing tokenizer files
|
|
# "ibert", # multiple issues with either mlm/qa/clas
|
|
# "transfo-xl", # tokenizer issues as Salesforce/ctrl
|
|
# "Salesforce/ctrl", # tokenizer issues
|
|
# "openai-community/openai-gpt", missing model files
|
|
# "tapas", multiple issues
|
|
],
|
|
"img_clas": [
|
|
"vit",
|
|
],
|
|
}
|
|
|
|
scripts_dir = f"{ROOT_DIRECTORY}/examples/pytorch"
|
|
|
|
tasks = {
|
|
"trans": f"""
|
|
{scripts_dir}/translation/run_translation.py
|
|
--train_file {data_dir_wmt}/train.json
|
|
--source_lang en
|
|
--target_lang ro
|
|
--max_source_length 12
|
|
--max_target_length 12
|
|
""",
|
|
"sum": f"""
|
|
{scripts_dir}/summarization/run_summarization.py
|
|
--train_file {data_dir_xsum}/sample.json
|
|
--max_source_length 12
|
|
--max_target_length 12
|
|
--lang en
|
|
""",
|
|
"clm": f"""
|
|
{scripts_dir}/language-modeling/run_clm.py
|
|
--train_file {FIXTURE_DIRECTORY}/sample_text.txt
|
|
--block_size 8
|
|
""",
|
|
"mlm": f"""
|
|
{scripts_dir}/language-modeling/run_mlm.py
|
|
--train_file {FIXTURE_DIRECTORY}/sample_text.txt
|
|
""",
|
|
"qa": f"""
|
|
{scripts_dir}/question-answering/run_qa.py
|
|
--train_file {data_dir_samples}/SQUAD/sample.json
|
|
""",
|
|
"clas": f"""
|
|
{scripts_dir}/text-classification/run_glue.py
|
|
--train_file {data_dir_samples}/MRPC/train.csv
|
|
--max_seq_length 12
|
|
--task_name MRPC
|
|
""",
|
|
"img_clas": f"""
|
|
{scripts_dir}/image-classification/run_image_classification.py
|
|
--dataset_name hf-internal-testing/cats_vs_dogs_sample
|
|
--remove_unused_columns False
|
|
--max_steps 10
|
|
--image_processor_name {DS_TESTS_DIRECTORY}/vit_feature_extractor.json
|
|
--label_column_name labels
|
|
""",
|
|
}
|
|
|
|
launcher = get_launcher(distributed=True)
|
|
|
|
cmds = {}
|
|
for task, args in tasks.items():
|
|
args = args.split()
|
|
for model in tasks2models[task]:
|
|
model_name = globals()[f"{model.upper().replace('-', '_')}_TINY"]
|
|
args_model = f"--model_name_or_path {model_name}".split()
|
|
cmds[f"{task}_{model}"] = launcher + args + args_model + args_main
|
|
|
|
# # generation special case
|
|
# if task == "gen":
|
|
# launcher = f"deepspeed --num_nodes 1 --num_gpus 1".split()
|
|
# args_model += f"--model_type {model}".split()
|
|
# cmds[f"{task}_{model}"] = launcher + args + args_model
|
|
# else:
|
|
|
|
return cmds
|
|
|
|
|
|
task_cmds = make_task_cmds()
|
|
|
|
ZERO2 = "zero2"
|
|
ZERO3 = "zero3"
|
|
|
|
stages = [ZERO2, ZERO3]
|
|
|
|
# future preparation:
|
|
# for now test just fp16, as these tests are quite slow
|
|
# FP16 = "fp16"
|
|
# BF16 = "bf16"
|
|
#
|
|
# dtypes = [FP16]
|
|
# so just hardcoding --fp16 for now
|
|
# if is_torch_bf16_gpu_available():
|
|
# dtypes += [BF16]
|
|
|
|
|
|
def parameterized_custom_name_func(func, param_num, param):
|
|
# customize the test name generator function as we want both params to appear in the sub-test
|
|
# name, as by default it shows only the first param
|
|
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
|
|
return f"{func.__name__}_{param_based_name}"
|
|
|
|
|
|
# Cartesian-product of zero stages with models to test
|
|
params = list(itertools.product(stages, task_cmds.keys()))
|
|
|
|
|
|
@slow
|
|
@require_deepspeed
|
|
@require_torch_gpu
|
|
class TestDeepSpeedModelZoo(TestCasePlus):
|
|
"""This class is for testing via an external script - can do multiple gpus"""
|
|
|
|
def get_task_cmd(self, task, stage):
|
|
# return a ready to run train cmd
|
|
if task not in task_cmds:
|
|
raise ValueError(f"don't know of task {task}, have {task_cmds.keys()}")
|
|
|
|
cmd = task_cmds[task]
|
|
args_ds = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
|
|
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
args_out = f"--output_dir {output_dir}".split()
|
|
|
|
cmd += args_ds + args_out
|
|
|
|
return cmd, output_dir
|
|
|
|
@parameterized.expand(params, name_func=parameterized_custom_name_func)
|
|
def test_zero_to_fp32(self, stage, task):
|
|
# testing the ability to do a run followed by recovery of full fp32 weights
|
|
|
|
cmd, output_dir = self.get_task_cmd(task, stage)
|
|
|
|
# 1. generate the checkpoint
|
|
cmd += "--save_steps 1".split()
|
|
# keep for quick debug
|
|
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] + cmd)); die
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
# 2. test that the fp32 weights get reconsolidated
|
|
chkpt_dir = f"{output_dir}/checkpoint-1"
|
|
recovered_model_path = f"{chkpt_dir}/out.bin"
|
|
cmd = f"{chkpt_dir}/zero_to_fp32.py {chkpt_dir} {recovered_model_path}"
|
|
# keep for quick debug
|
|
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
|
|
subprocess.check_call(cmd, shell=True)
|
|
assert os.path.exists(recovered_model_path), f"{recovered_model_path} was not found"
|
|
|
|
# possibly could also test that the resulting saved model is usable but given that we use
|
|
# random models we won't know if it's any good
|