286 lines
9.4 KiB
Python
286 lines
9.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
import os
|
|
import sys
|
|
from unittest.mock import patch
|
|
|
|
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
|
|
|
|
|
|
SRC_DIRS = [
|
|
os.path.join(os.path.dirname(__file__), dirname)
|
|
for dirname in [
|
|
"text-classification",
|
|
"language-modeling",
|
|
"summarization",
|
|
"token-classification",
|
|
"question-answering",
|
|
"speech-recognition",
|
|
]
|
|
]
|
|
sys.path.extend(SRC_DIRS)
|
|
|
|
|
|
if SRC_DIRS is not None:
|
|
import run_clm_flax
|
|
import run_flax_glue
|
|
import run_flax_ner
|
|
import run_flax_speech_recognition_seq2seq
|
|
import run_mlm_flax
|
|
import run_qa
|
|
import run_summarization_flax
|
|
import run_t5_mlm_flax
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
def get_setup_file():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("-f")
|
|
args = parser.parse_args()
|
|
return args.f
|
|
|
|
|
|
def get_results(output_dir, split="eval"):
|
|
path = os.path.join(output_dir, f"{split}_results.json")
|
|
if os.path.exists(path):
|
|
with open(path, "r") as f:
|
|
return json.load(f)
|
|
raise ValueError(f"can't find {path}")
|
|
|
|
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
|
|
class ExamplesTests(TestCasePlus):
|
|
def test_run_glue(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_glue.py
|
|
--model_name_or_path distilbert/distilbert-base-uncased
|
|
--output_dir {tmp_dir}
|
|
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
|
|
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=1
|
|
--learning_rate=1e-4
|
|
--eval_steps=2
|
|
--warmup_steps=2
|
|
--seed=42
|
|
--max_seq_length=128
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_flax_glue.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
|
|
|
|
@slow
|
|
def test_run_clm(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_clm_flax.py
|
|
--model_name_or_path distilbert/distilgpt2
|
|
--train_file ./tests/fixtures/sample_text.txt
|
|
--validation_file ./tests/fixtures/sample_text.txt
|
|
--do_train
|
|
--do_eval
|
|
--block_size 128
|
|
--per_device_train_batch_size 4
|
|
--per_device_eval_batch_size 4
|
|
--num_train_epochs 2
|
|
--logging_steps 2 --eval_steps 2
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_clm_flax.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertLess(result["eval_perplexity"], 100)
|
|
|
|
@slow
|
|
def test_run_summarization(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_summarization.py
|
|
--model_name_or_path google-t5/t5-small
|
|
--train_file tests/fixtures/tests_samples/xsum/sample.json
|
|
--validation_file tests/fixtures/tests_samples/xsum/sample.json
|
|
--test_file tests/fixtures/tests_samples/xsum/sample.json
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--num_train_epochs=3
|
|
--warmup_steps=8
|
|
--do_train
|
|
--do_eval
|
|
--do_predict
|
|
--learning_rate=2e-4
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=1
|
|
--predict_with_generate
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_summarization_flax.main()
|
|
result = get_results(tmp_dir, split="test")
|
|
self.assertGreaterEqual(result["test_rouge1"], 10)
|
|
self.assertGreaterEqual(result["test_rouge2"], 2)
|
|
self.assertGreaterEqual(result["test_rougeL"], 7)
|
|
self.assertGreaterEqual(result["test_rougeLsum"], 7)
|
|
|
|
@slow
|
|
def test_run_mlm(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_mlm.py
|
|
--model_name_or_path distilbert/distilroberta-base
|
|
--train_file ./tests/fixtures/sample_text.txt
|
|
--validation_file ./tests/fixtures/sample_text.txt
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--max_seq_length 128
|
|
--per_device_train_batch_size 4
|
|
--per_device_eval_batch_size 4
|
|
--logging_steps 2 --eval_steps 2
|
|
--do_train
|
|
--do_eval
|
|
--num_train_epochs=1
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_mlm_flax.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertLess(result["eval_perplexity"], 42)
|
|
|
|
@slow
|
|
def test_run_t5_mlm(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_t5_mlm_flax.py
|
|
--model_name_or_path google-t5/t5-small
|
|
--train_file ./tests/fixtures/sample_text.txt
|
|
--validation_file ./tests/fixtures/sample_text.txt
|
|
--do_train
|
|
--do_eval
|
|
--max_seq_length 128
|
|
--per_device_train_batch_size 4
|
|
--per_device_eval_batch_size 4
|
|
--num_train_epochs 2
|
|
--logging_steps 2 --eval_steps 2
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_t5_mlm_flax.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertGreaterEqual(result["eval_accuracy"], 0.42)
|
|
|
|
@slow
|
|
def test_run_ner(self):
|
|
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
|
|
epochs = 7 if get_gpu_count() > 1 else 2
|
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_flax_ner.py
|
|
--model_name_or_path google-bert/bert-base-uncased
|
|
--train_file tests/fixtures/tests_samples/conll/sample.json
|
|
--validation_file tests/fixtures/tests_samples/conll/sample.json
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--do_train
|
|
--do_eval
|
|
--warmup_steps=2
|
|
--learning_rate=2e-4
|
|
--logging_steps 2 --eval_steps 2
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=2
|
|
--num_train_epochs={epochs}
|
|
--seed 7
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_flax_ner.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
|
|
self.assertGreaterEqual(result["eval_f1"], 0.3)
|
|
|
|
@slow
|
|
def test_run_qa(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_qa.py
|
|
--model_name_or_path google-bert/bert-base-uncased
|
|
--version_2_with_negative
|
|
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
|
|
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--num_train_epochs=3
|
|
--warmup_steps=2
|
|
--do_train
|
|
--do_eval
|
|
--logging_steps 2 --eval_steps 2
|
|
--learning_rate=2e-4
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=1
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_qa.main()
|
|
result = get_results(tmp_dir)
|
|
self.assertGreaterEqual(result["eval_f1"], 30)
|
|
self.assertGreaterEqual(result["eval_exact"], 30)
|
|
|
|
@slow
|
|
def test_run_flax_speech_recognition_seq2seq(self):
|
|
tmp_dir = self.get_auto_remove_tmp_dir()
|
|
testargs = f"""
|
|
run_flax_speech_recognition_seq2seq.py
|
|
--model_name_or_path openai/whisper-tiny.en
|
|
--dataset_name hf-internal-testing/librispeech_asr_dummy
|
|
--dataset_config clean
|
|
--train_split_name validation
|
|
--eval_split_name validation
|
|
--output_dir {tmp_dir}
|
|
--overwrite_output_dir
|
|
--num_train_epochs=2
|
|
--max_train_samples 10
|
|
--max_eval_samples 10
|
|
--warmup_steps=8
|
|
--do_train
|
|
--do_eval
|
|
--learning_rate=2e-4
|
|
--per_device_train_batch_size=2
|
|
--per_device_eval_batch_size=1
|
|
--predict_with_generate
|
|
""".split()
|
|
|
|
with patch.object(sys, "argv", testargs):
|
|
run_flax_speech_recognition_seq2seq.main()
|
|
result = get_results(tmp_dir, split="eval")
|
|
self.assertLessEqual(result["eval_wer"], 0.05)
|