827 lines
35 KiB
Python
Executable File
827 lines
35 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library
|
|
without using a Trainer.
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import datasets
|
|
import evaluate
|
|
import numpy as np
|
|
import torch
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import set_seed
|
|
from datasets import ClassLabel, load_dataset
|
|
from huggingface_hub import HfApi
|
|
from torch.utils.data import DataLoader
|
|
from tqdm.auto import tqdm
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
MODEL_MAPPING,
|
|
AutoConfig,
|
|
AutoModelForTokenClassification,
|
|
AutoTokenizer,
|
|
DataCollatorForTokenClassification,
|
|
PretrainedConfig,
|
|
SchedulerType,
|
|
default_data_collator,
|
|
get_scheduler,
|
|
)
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.42.0.dev0")
|
|
|
|
logger = get_logger(__name__)
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
|
|
|
# You should update this to your particular problem to have better documentation of `model_type`
|
|
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Finetune a transformers model on a text classification task (NER) with accelerate library"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the dataset to use (via the datasets library).",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The configuration name of the dataset to use (via the datasets library).",
|
|
)
|
|
parser.add_argument(
|
|
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
|
|
)
|
|
parser.add_argument(
|
|
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
|
|
)
|
|
parser.add_argument(
|
|
"--text_column_name",
|
|
type=str,
|
|
default=None,
|
|
help="The column name of text to input in the file (a csv or JSON file).",
|
|
)
|
|
parser.add_argument(
|
|
"--label_column_name",
|
|
type=str,
|
|
default=None,
|
|
help="The column name of label to input in the file (a csv or JSON file).",
|
|
)
|
|
parser.add_argument(
|
|
"--max_length",
|
|
type=int,
|
|
default=128,
|
|
help=(
|
|
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
|
|
" sequences shorter will be padded if `--pad_to_max_length` is passed."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--pad_to_max_length",
|
|
action="store_true",
|
|
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
|
|
)
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
type=str,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
required=False,
|
|
)
|
|
parser.add_argument(
|
|
"--config_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained config name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_train_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the training dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--per_device_eval_batch_size",
|
|
type=int,
|
|
default=8,
|
|
help="Batch size (per device) for the evaluation dataloader.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-5,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
|
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler_type",
|
|
type=SchedulerType,
|
|
default="linear",
|
|
help="The scheduler type to use.",
|
|
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
|
)
|
|
parser.add_argument(
|
|
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--model_type",
|
|
type=str,
|
|
default=None,
|
|
help="Model type to use if training from scratch.",
|
|
choices=MODEL_TYPES,
|
|
)
|
|
parser.add_argument(
|
|
"--label_all_tokens",
|
|
action="store_true",
|
|
help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.",
|
|
)
|
|
parser.add_argument(
|
|
"--return_entity_level_metrics",
|
|
action="store_true",
|
|
help="Indication whether entity level metrics are to be returner.",
|
|
)
|
|
parser.add_argument(
|
|
"--task_name",
|
|
type=str,
|
|
default="ner",
|
|
choices=["ner", "pos", "chunk"],
|
|
help="The name of the task.",
|
|
)
|
|
parser.add_argument(
|
|
"--debug",
|
|
action="store_true",
|
|
help="Activate debug mode and run training only with a subset of data.",
|
|
)
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
|
|
)
|
|
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--trust_remote_code",
|
|
type=bool,
|
|
default=False,
|
|
help=(
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=str,
|
|
default=None,
|
|
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help="If the training should continue from a checkpoint folder.",
|
|
)
|
|
parser.add_argument(
|
|
"--with_tracking",
|
|
action="store_true",
|
|
help="Whether to enable experiment trackers for logging.",
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="all",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
|
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
|
|
"Only applicable when `--with_tracking` is passed."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--ignore_mismatched_sizes",
|
|
action="store_true",
|
|
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
# Sanity checks
|
|
if args.task_name is None and args.train_file is None and args.validation_file is None:
|
|
raise ValueError("Need either a task name or a training/validation file.")
|
|
else:
|
|
if args.train_file is not None:
|
|
extension = args.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if args.validation_file is not None:
|
|
extension = args.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
|
|
if args.push_to_hub:
|
|
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_ner_no_trainer", args)
|
|
|
|
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
|
|
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
|
|
# in the environment
|
|
accelerator = (
|
|
Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator()
|
|
)
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.push_to_hub:
|
|
# Retrieve of infer repo_name
|
|
repo_name = args.hub_model_id
|
|
if repo_name is None:
|
|
repo_name = Path(args.output_dir).absolute().name
|
|
# Create repo and retrieve repo_id
|
|
api = HfApi()
|
|
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
if "step_*" not in gitignore:
|
|
gitignore.write("step_*\n")
|
|
if "epoch_*" not in gitignore:
|
|
gitignore.write("epoch_*\n")
|
|
elif args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
|
|
# 'tokens' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
|
|
else:
|
|
data_files = {}
|
|
if args.train_file is not None:
|
|
data_files["train"] = args.train_file
|
|
extension = args.train_file.split(".")[-1]
|
|
if args.validation_file is not None:
|
|
data_files["validation"] = args.validation_file
|
|
extension = args.validation_file.split(".")[-1]
|
|
raw_datasets = load_dataset(extension, data_files=data_files)
|
|
# Trim a number of training examples
|
|
if args.debug:
|
|
for split in raw_datasets.keys():
|
|
raw_datasets[split] = raw_datasets[split].select(range(100))
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
if raw_datasets["train"] is not None:
|
|
column_names = raw_datasets["train"].column_names
|
|
features = raw_datasets["train"].features
|
|
else:
|
|
column_names = raw_datasets["validation"].column_names
|
|
features = raw_datasets["validation"].features
|
|
|
|
if args.text_column_name is not None:
|
|
text_column_name = args.text_column_name
|
|
elif "tokens" in column_names:
|
|
text_column_name = "tokens"
|
|
else:
|
|
text_column_name = column_names[0]
|
|
|
|
if args.label_column_name is not None:
|
|
label_column_name = args.label_column_name
|
|
elif f"{args.task_name}_tags" in column_names:
|
|
label_column_name = f"{args.task_name}_tags"
|
|
else:
|
|
label_column_name = column_names[1]
|
|
|
|
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
|
|
# unique labels.
|
|
def get_label_list(labels):
|
|
unique_labels = set()
|
|
for label in labels:
|
|
unique_labels = unique_labels | set(label)
|
|
label_list = list(unique_labels)
|
|
label_list.sort()
|
|
return label_list
|
|
|
|
# If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
|
|
# Otherwise, we have to get the list of labels manually.
|
|
labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
|
|
if labels_are_int:
|
|
label_list = features[label_column_name].feature.names
|
|
label_to_id = {i: i for i in range(len(label_list))}
|
|
else:
|
|
label_list = get_label_list(raw_datasets["train"][label_column_name])
|
|
label_to_id = {l: i for i, l in enumerate(label_list)}
|
|
|
|
num_labels = len(label_list)
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
if args.config_name:
|
|
config = AutoConfig.from_pretrained(
|
|
args.config_name, num_labels=num_labels, trust_remote_code=args.trust_remote_code
|
|
)
|
|
elif args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(
|
|
args.model_name_or_path, num_labels=num_labels, trust_remote_code=args.trust_remote_code
|
|
)
|
|
else:
|
|
config = CONFIG_MAPPING[args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
|
|
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
|
|
if not tokenizer_name_or_path:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
if config.model_type in {"bloom", "gpt2", "roberta"}:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path, use_fast=True, add_prefix_space=True, trust_remote_code=args.trust_remote_code
|
|
)
|
|
else:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path, use_fast=True, trust_remote_code=args.trust_remote_code
|
|
)
|
|
|
|
if args.model_name_or_path:
|
|
model = AutoModelForTokenClassification.from_pretrained(
|
|
args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in args.model_name_or_path),
|
|
config=config,
|
|
ignore_mismatched_sizes=args.ignore_mismatched_sizes,
|
|
trust_remote_code=args.trust_remote_code,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelForTokenClassification.from_config(config, trust_remote_code=args.trust_remote_code)
|
|
|
|
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
|
# on a small vocab and want a smaller embedding size, remove this test.
|
|
embedding_size = model.get_input_embeddings().weight.shape[0]
|
|
if len(tokenizer) > embedding_size:
|
|
embedding_size = model.get_input_embeddings().weight.shape[0]
|
|
if len(tokenizer) > embedding_size:
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
# Model has labels -> use them.
|
|
if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
|
|
if sorted(model.config.label2id.keys()) == sorted(label_list):
|
|
# Reorganize `label_list` to match the ordering of the model.
|
|
if labels_are_int:
|
|
label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
|
|
label_list = [model.config.id2label[i] for i in range(num_labels)]
|
|
else:
|
|
label_list = [model.config.id2label[i] for i in range(num_labels)]
|
|
label_to_id = {l: i for i, l in enumerate(label_list)}
|
|
else:
|
|
logger.warning(
|
|
"Your model seems to have been trained with labels, but they don't match the dataset: ",
|
|
f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:"
|
|
f" {sorted(label_list)}.\nIgnoring the model labels as a result.",
|
|
)
|
|
|
|
# Set the correspondences label/ID inside the model config
|
|
model.config.label2id = {l: i for i, l in enumerate(label_list)}
|
|
model.config.id2label = dict(enumerate(label_list))
|
|
|
|
# Map that sends B-Xxx label to its I-Xxx counterpart
|
|
b_to_i_label = []
|
|
for idx, label in enumerate(label_list):
|
|
if label.startswith("B-") and label.replace("B-", "I-") in label_list:
|
|
b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
|
|
else:
|
|
b_to_i_label.append(idx)
|
|
|
|
# Preprocessing the datasets.
|
|
# First we tokenize all the texts.
|
|
padding = "max_length" if args.pad_to_max_length else False
|
|
|
|
# Tokenize all texts and align the labels with them.
|
|
|
|
def tokenize_and_align_labels(examples):
|
|
tokenized_inputs = tokenizer(
|
|
examples[text_column_name],
|
|
max_length=args.max_length,
|
|
padding=padding,
|
|
truncation=True,
|
|
# We use this argument because the texts in our dataset are lists of words (with a label for each word).
|
|
is_split_into_words=True,
|
|
)
|
|
|
|
labels = []
|
|
for i, label in enumerate(examples[label_column_name]):
|
|
word_ids = tokenized_inputs.word_ids(batch_index=i)
|
|
previous_word_idx = None
|
|
label_ids = []
|
|
for word_idx in word_ids:
|
|
# Special tokens have a word id that is None. We set the label to -100 so they are automatically
|
|
# ignored in the loss function.
|
|
if word_idx is None:
|
|
label_ids.append(-100)
|
|
# We set the label for the first token of each word.
|
|
elif word_idx != previous_word_idx:
|
|
label_ids.append(label_to_id[label[word_idx]])
|
|
# For the other tokens in a word, we set the label to either the current label or -100, depending on
|
|
# the label_all_tokens flag.
|
|
else:
|
|
if args.label_all_tokens:
|
|
label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
|
|
else:
|
|
label_ids.append(-100)
|
|
previous_word_idx = word_idx
|
|
|
|
labels.append(label_ids)
|
|
tokenized_inputs["labels"] = labels
|
|
return tokenized_inputs
|
|
|
|
with accelerator.main_process_first():
|
|
processed_raw_datasets = raw_datasets.map(
|
|
tokenize_and_align_labels,
|
|
batched=True,
|
|
remove_columns=raw_datasets["train"].column_names,
|
|
desc="Running tokenizer on dataset",
|
|
)
|
|
|
|
train_dataset = processed_raw_datasets["train"]
|
|
eval_dataset = processed_raw_datasets["validation"]
|
|
|
|
# Log a few random samples from the training set:
|
|
for index in random.sample(range(len(train_dataset)), 3):
|
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
|
|
|
# DataLoaders creation:
|
|
if args.pad_to_max_length:
|
|
# If padding was already done ot max length, we use the default data collator that will just convert everything
|
|
# to tensors.
|
|
data_collator = default_data_collator
|
|
else:
|
|
# Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
|
|
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
|
|
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
|
|
data_collator = DataCollatorForTokenClassification(
|
|
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
|
|
)
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
|
|
)
|
|
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
|
|
|
|
# Optimizer
|
|
# Split weights in two groups, one with weight decay and the other not.
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": args.weight_decay,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
|
|
|
|
# Use the device given by the `accelerator` object.
|
|
device = accelerator.device
|
|
model.to(device)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
name=args.lr_scheduler_type,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.num_warmup_steps,
|
|
num_training_steps=args.max_train_steps,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
|
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
|
)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# Figure out how many steps we should save the Accelerator states
|
|
checkpointing_steps = args.checkpointing_steps
|
|
if checkpointing_steps is not None and checkpointing_steps.isdigit():
|
|
checkpointing_steps = int(checkpointing_steps)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if args.with_tracking:
|
|
experiment_config = vars(args)
|
|
# TensorBoard cannot log Enums, need the raw value
|
|
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
|
|
accelerator.init_trackers("ner_no_trainer", experiment_config)
|
|
|
|
# Metrics
|
|
metric = evaluate.load("seqeval")
|
|
|
|
def get_labels(predictions, references):
|
|
# Transform predictions and references tensos to numpy arrays
|
|
if device.type == "cpu":
|
|
y_pred = predictions.detach().clone().numpy()
|
|
y_true = references.detach().clone().numpy()
|
|
else:
|
|
y_pred = predictions.detach().cpu().clone().numpy()
|
|
y_true = references.detach().cpu().clone().numpy()
|
|
|
|
# Remove ignored index (special tokens)
|
|
true_predictions = [
|
|
[label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
true_labels = [
|
|
[label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
|
|
for pred, gold_label in zip(y_pred, y_true)
|
|
]
|
|
return true_predictions, true_labels
|
|
|
|
def compute_metrics():
|
|
results = metric.compute()
|
|
if args.return_entity_level_metrics:
|
|
# Unpack nested dictionaries
|
|
final_results = {}
|
|
for key, value in results.items():
|
|
if isinstance(value, dict):
|
|
for n, v in value.items():
|
|
final_results[f"{key}_{n}"] = v
|
|
else:
|
|
final_results[key] = value
|
|
return final_results
|
|
else:
|
|
return {
|
|
"precision": results["overall_precision"],
|
|
"recall": results["overall_recall"],
|
|
"f1": results["overall_f1"],
|
|
"accuracy": results["overall_accuracy"],
|
|
}
|
|
|
|
# Train!
|
|
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
|
completed_steps = 0
|
|
starting_epoch = 0
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
|
|
checkpoint_path = args.resume_from_checkpoint
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
|
|
dirs.sort(key=os.path.getctime)
|
|
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
|
|
checkpoint_path = path
|
|
path = os.path.basename(checkpoint_path)
|
|
|
|
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
|
|
accelerator.load_state(checkpoint_path)
|
|
# Extract `epoch_{i}` or `step_{i}`
|
|
training_difference = os.path.splitext(path)[0]
|
|
|
|
if "epoch" in training_difference:
|
|
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
|
|
resume_step = None
|
|
completed_steps = starting_epoch * num_update_steps_per_epoch
|
|
else:
|
|
# need to multiply `gradient_accumulation_steps` to reflect real steps
|
|
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
|
|
starting_epoch = resume_step // len(train_dataloader)
|
|
completed_steps = resume_step // args.gradient_accumulation_steps
|
|
resume_step -= starting_epoch * len(train_dataloader)
|
|
|
|
# update the progress_bar if load from checkpoint
|
|
progress_bar.update(completed_steps)
|
|
|
|
for epoch in range(starting_epoch, args.num_train_epochs):
|
|
model.train()
|
|
if args.with_tracking:
|
|
total_loss = 0
|
|
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
|
|
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
|
|
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
|
else:
|
|
active_dataloader = train_dataloader
|
|
for step, batch in enumerate(active_dataloader):
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
# We keep track of the loss at each epoch
|
|
if args.with_tracking:
|
|
total_loss += loss.detach().float()
|
|
loss = loss / args.gradient_accumulation_steps
|
|
accelerator.backward(loss)
|
|
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
progress_bar.update(1)
|
|
completed_steps += 1
|
|
|
|
if isinstance(checkpointing_steps, int):
|
|
if completed_steps % checkpointing_steps == 0:
|
|
output_dir = f"step_{completed_steps}"
|
|
if args.output_dir is not None:
|
|
output_dir = os.path.join(args.output_dir, output_dir)
|
|
accelerator.save_state(output_dir)
|
|
|
|
if completed_steps >= args.max_train_steps:
|
|
break
|
|
|
|
model.eval()
|
|
samples_seen = 0
|
|
for step, batch in enumerate(eval_dataloader):
|
|
with torch.no_grad():
|
|
outputs = model(**batch)
|
|
predictions = outputs.logits.argmax(dim=-1)
|
|
labels = batch["labels"]
|
|
if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered
|
|
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
|
|
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
|
|
predictions_gathered, labels_gathered = accelerator.gather((predictions, labels))
|
|
# If we are in a multiprocess environment, the last batch has duplicates
|
|
if accelerator.num_processes > 1:
|
|
if step == len(eval_dataloader) - 1:
|
|
predictions_gathered = predictions_gathered[: len(eval_dataloader.dataset) - samples_seen]
|
|
labels_gathered = labels_gathered[: len(eval_dataloader.dataset) - samples_seen]
|
|
else:
|
|
samples_seen += labels_gathered.shape[0]
|
|
preds, refs = get_labels(predictions_gathered, labels_gathered)
|
|
metric.add_batch(
|
|
predictions=preds,
|
|
references=refs,
|
|
) # predictions and preferences are expected to be a nested list of labels, not label_ids
|
|
|
|
eval_metric = compute_metrics()
|
|
accelerator.print(f"epoch {epoch}:", eval_metric)
|
|
if args.with_tracking:
|
|
accelerator.log(
|
|
{
|
|
"seqeval": eval_metric,
|
|
"train_loss": total_loss.item() / len(train_dataloader),
|
|
"epoch": epoch,
|
|
"step": completed_steps,
|
|
},
|
|
step=completed_steps,
|
|
)
|
|
|
|
if args.push_to_hub and epoch < args.num_train_epochs - 1:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(
|
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
|
|
)
|
|
if accelerator.is_main_process:
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
api.upload_folder(
|
|
commit_message=f"Training in progress epoch {epoch}",
|
|
folder_path=args.output_dir,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
token=args.hub_token,
|
|
)
|
|
|
|
if args.checkpointing_steps == "epoch":
|
|
output_dir = f"epoch_{epoch}"
|
|
if args.output_dir is not None:
|
|
output_dir = os.path.join(args.output_dir, output_dir)
|
|
accelerator.save_state(output_dir)
|
|
|
|
if args.with_tracking:
|
|
accelerator.end_training()
|
|
|
|
if args.output_dir is not None:
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(
|
|
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
|
|
)
|
|
if accelerator.is_main_process:
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
if args.push_to_hub:
|
|
api.upload_folder(
|
|
commit_message="End of training",
|
|
folder_path=args.output_dir,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
token=args.hub_token,
|
|
)
|
|
|
|
all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
|
|
if args.with_tracking:
|
|
all_results.update({"train_loss": total_loss.item() / len(train_dataloader)})
|
|
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
|
|
# Convert all float64 & int64 type numbers to float & int for json serialization
|
|
for key, value in all_results.items():
|
|
if isinstance(value, np.float64):
|
|
all_results[key] = float(value)
|
|
elif isinstance(value, np.int64):
|
|
all_results[key] = int(value)
|
|
json.dump(all_results, f)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|