432 lines
18 KiB
Python
432 lines
18 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from random import randint
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import evaluate
|
|
import numpy as np
|
|
from datasets import DatasetDict, load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoModelForAudioClassification,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.42.0.dev0")
|
|
|
|
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
|
|
|
|
|
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000):
|
|
"""Randomly sample chunks of `max_length` seconds from the input audio"""
|
|
sample_length = int(round(sample_rate * max_length))
|
|
if len(wav) <= sample_length:
|
|
return wav
|
|
random_offset = randint(0, len(wav) - sample_length - 1)
|
|
return wav[random_offset : random_offset + sample_length]
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"})
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(
|
|
default=None, metadata={"help": "A file containing the training audio paths and labels."}
|
|
)
|
|
eval_file: Optional[str] = field(
|
|
default=None, metadata={"help": "A file containing the validation audio paths and labels."}
|
|
)
|
|
train_split_name: str = field(
|
|
default="train",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
eval_split_name: str = field(
|
|
default="validation",
|
|
metadata={
|
|
"help": (
|
|
"The name of the training data set split to use (via the datasets library). Defaults to 'validation'"
|
|
)
|
|
},
|
|
)
|
|
audio_column_name: str = field(
|
|
default="audio",
|
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
|
)
|
|
label_column_name: str = field(
|
|
default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"}
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_length_seconds: float = field(
|
|
default=20,
|
|
metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default="facebook/wav2vec2-base",
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
feature_extractor_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Name or path of preprocessor config."}
|
|
)
|
|
freeze_feature_encoder: bool = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
|
)
|
|
attention_mask: bool = field(
|
|
default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
freeze_feature_extractor: Optional[bool] = field(
|
|
default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
|
)
|
|
ignore_mismatched_sizes: bool = field(
|
|
default=False,
|
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
|
|
warnings.warn(
|
|
"The argument `--freeze_feature_extractor` is deprecated and "
|
|
"will be removed in a future version. Use `--freeze_feature_encoder` "
|
|
"instead. Setting `freeze_feature_encoder==True`.",
|
|
FutureWarning,
|
|
)
|
|
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
|
|
raise ValueError(
|
|
"The argument `--freeze_feature_extractor` is deprecated and "
|
|
"should not be used in combination with `--freeze_feature_encoder`. "
|
|
"Only make use of `--freeze_feature_encoder`."
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_audio_classification", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to train from scratch."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Initialize our dataset and prepare it for the audio classification task.
|
|
raw_datasets = DatasetDict()
|
|
raw_datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.train_split_name,
|
|
token=model_args.token,
|
|
)
|
|
raw_datasets["eval"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.eval_split_name,
|
|
token=model_args.token,
|
|
)
|
|
|
|
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
|
f"{', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
if data_args.label_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--label_column_name` to the correct text column - one of "
|
|
f"{', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
|
|
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
model_args.feature_extractor_name or model_args.model_name_or_path,
|
|
return_attention_mask=model_args.attention_mask,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
# `datasets` takes care of automatically loading and resampling the audio,
|
|
# so we just need to set the correct target sampling rate.
|
|
raw_datasets = raw_datasets.cast_column(
|
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
|
)
|
|
|
|
model_input_name = feature_extractor.model_input_names[0]
|
|
|
|
def train_transforms(batch):
|
|
"""Apply train_transforms across a batch."""
|
|
subsampled_wavs = []
|
|
for audio in batch[data_args.audio_column_name]:
|
|
wav = random_subsample(
|
|
audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
|
|
)
|
|
subsampled_wavs.append(wav)
|
|
inputs = feature_extractor(subsampled_wavs, sampling_rate=feature_extractor.sampling_rate)
|
|
output_batch = {model_input_name: inputs.get(model_input_name)}
|
|
output_batch["labels"] = list(batch[data_args.label_column_name])
|
|
|
|
return output_batch
|
|
|
|
def val_transforms(batch):
|
|
"""Apply val_transforms across a batch."""
|
|
wavs = [audio["array"] for audio in batch[data_args.audio_column_name]]
|
|
inputs = feature_extractor(wavs, sampling_rate=feature_extractor.sampling_rate)
|
|
output_batch = {model_input_name: inputs.get(model_input_name)}
|
|
output_batch["labels"] = list(batch[data_args.label_column_name])
|
|
|
|
return output_batch
|
|
|
|
# Prepare label mappings.
|
|
# We'll include these in the model's config to get human readable labels in the Inference API.
|
|
labels = raw_datasets["train"].features[data_args.label_column_name].names
|
|
label2id, id2label = {}, {}
|
|
for i, label in enumerate(labels):
|
|
label2id[label] = str(i)
|
|
id2label[str(i)] = label
|
|
|
|
# Load the accuracy metric from the datasets package
|
|
metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
|
|
|
|
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
|
|
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
|
|
def compute_metrics(eval_pred):
|
|
"""Computes accuracy on a batch of predictions"""
|
|
predictions = np.argmax(eval_pred.predictions, axis=1)
|
|
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name or model_args.model_name_or_path,
|
|
num_labels=len(labels),
|
|
label2id=label2id,
|
|
id2label=id2label,
|
|
finetuning_task="audio-classification",
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForAudioClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
|
)
|
|
|
|
# freeze the convolutional waveform encoder
|
|
if model_args.freeze_feature_encoder:
|
|
model.freeze_feature_encoder()
|
|
|
|
if training_args.do_train:
|
|
if data_args.max_train_samples is not None:
|
|
raw_datasets["train"] = (
|
|
raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
|
)
|
|
# Set the training transforms
|
|
raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)
|
|
|
|
if training_args.do_eval:
|
|
if data_args.max_eval_samples is not None:
|
|
raw_datasets["eval"] = (
|
|
raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
|
)
|
|
# Set the validation transforms
|
|
raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False)
|
|
|
|
# Initialize our trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=raw_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=feature_extractor,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "audio-classification",
|
|
"dataset": data_args.dataset_name,
|
|
"tags": ["audio-classification"],
|
|
}
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|