871 lines
37 KiB
Python
Executable File
871 lines
37 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
|
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
|
https://huggingface.co/models?filter=text-generation
|
|
"""
|
|
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
import time
|
|
from dataclasses import asdict, dataclass, field
|
|
from enum import Enum
|
|
from itertools import chain
|
|
from pathlib import Path
|
|
from typing import Callable, Optional
|
|
|
|
import datasets
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import optax
|
|
from datasets import Dataset, load_dataset
|
|
from flax import jax_utils, traverse_util
|
|
from flax.jax_utils import pad_shard_unpad, unreplicate
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
|
from huggingface_hub import HfApi
|
|
from tqdm import tqdm
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
FlaxAutoModelForCausalLM,
|
|
HfArgumentParser,
|
|
is_tensorboard_available,
|
|
set_seed,
|
|
)
|
|
from transformers.testing_utils import CaptureLogger
|
|
from transformers.utils import send_example_telemetry
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments:
|
|
output_dir: str = field(
|
|
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
|
|
)
|
|
overwrite_output_dir: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Overwrite the content of the output directory. "
|
|
"Use this to continue training if output_dir points to a checkpoint directory."
|
|
)
|
|
},
|
|
)
|
|
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
|
|
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
|
|
per_device_train_batch_size: int = field(
|
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
|
|
)
|
|
per_device_eval_batch_size: int = field(
|
|
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
|
|
)
|
|
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
|
|
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
|
|
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
|
|
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
|
|
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
|
|
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
|
|
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
|
|
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
|
|
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
|
|
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
|
|
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
|
|
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
|
|
push_to_hub: bool = field(
|
|
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
|
|
)
|
|
hub_model_id: str = field(
|
|
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
|
|
)
|
|
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
|
|
|
|
def __post_init__(self):
|
|
if self.output_dir is not None:
|
|
self.output_dir = os.path.expanduser(self.output_dir)
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
|
|
the token values by removing their value.
|
|
"""
|
|
d = asdict(self)
|
|
for k, v in d.items():
|
|
if isinstance(v, Enum):
|
|
d[k] = v.value
|
|
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
|
|
d[k] = [x.value for x in v]
|
|
if k.endswith("_token"):
|
|
d[k] = f"<{k.upper()}>"
|
|
return d
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
|
"""
|
|
|
|
model_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
|
|
)
|
|
},
|
|
)
|
|
model_type: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
dtype: Optional[str] = field(
|
|
default="float32",
|
|
metadata={
|
|
"help": (
|
|
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
|
|
" `[float32, float16, bfloat16]`."
|
|
)
|
|
},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
validation_split_percentage: Optional[int] = field(
|
|
default=5,
|
|
metadata={
|
|
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
|
},
|
|
)
|
|
block_size: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Optional input sequence length after tokenization. "
|
|
"The training dataset will be truncated in block of this size for training. "
|
|
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
|
)
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
keep_linebreaks: bool = field(
|
|
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
|
|
raise ValueError("Need either a dataset name or a training/validation file.")
|
|
else:
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
if extension not in ["csv", "json", "txt"]:
|
|
raise ValueError("train_file` should be a csv, json or text file.")
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
if extension not in ["csv", "json", "txt"]:
|
|
raise ValueError("`validation_file` should be a csv, json or text file.")
|
|
|
|
|
|
class TrainState(train_state.TrainState):
|
|
dropout_rng: jnp.ndarray
|
|
|
|
def replicate(self):
|
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
|
|
|
|
|
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
|
|
"""
|
|
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
|
|
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
|
|
"""
|
|
if shuffle:
|
|
batch_idx = jax.random.permutation(rng, len(dataset))
|
|
batch_idx = np.asarray(batch_idx)
|
|
else:
|
|
batch_idx = np.arange(len(dataset))
|
|
|
|
if drop_last:
|
|
steps_per_epoch = len(dataset) // batch_size
|
|
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
|
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
|
else:
|
|
steps_per_epoch = math.ceil(len(dataset) / batch_size)
|
|
batch_idx = np.array_split(batch_idx, steps_per_epoch)
|
|
|
|
for idx in batch_idx:
|
|
batch = dataset[idx]
|
|
batch = {k: np.array(v) for k, v in batch.items()}
|
|
|
|
yield batch
|
|
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
|
summary_writer.scalar("train_time", train_time, step)
|
|
|
|
train_metrics = get_metrics(train_metrics)
|
|
for key, vals in train_metrics.items():
|
|
tag = f"train_{key}"
|
|
for i, val in enumerate(vals):
|
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
|
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step):
|
|
for metric_name, value in eval_metrics.items():
|
|
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
|
|
|
|
|
def create_learning_rate_fn(
|
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
|
) -> Callable[[int], jnp.ndarray]:
|
|
"""Returns a linear warmup, linear_decay learning rate function."""
|
|
steps_per_epoch = train_ds_size // train_batch_size
|
|
num_train_steps = steps_per_epoch * num_train_epochs
|
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
|
decay_fn = optax.linear_schedule(
|
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
|
)
|
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
|
return schedule_fn
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_clm", model_args, data_args, framework="flax")
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Handle the repository creation
|
|
if training_args.push_to_hub:
|
|
# Retrieve of infer repo_name
|
|
repo_name = training_args.hub_model_id
|
|
if repo_name is None:
|
|
repo_name = Path(training_args.output_dir).absolute().name
|
|
# Create repo and retrieve repo_id
|
|
api = HfApi()
|
|
repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
|
# 'text' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
dataset = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
keep_in_memory=False,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
|
|
if "validation" not in dataset.keys():
|
|
dataset["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"train[:{data_args.validation_split_percentage}%]",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
dataset["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"train[{data_args.validation_split_percentage}%:]",
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
else:
|
|
data_files = {}
|
|
dataset_args = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if extension == "txt":
|
|
extension = "text"
|
|
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
|
|
dataset = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
cache_dir=model_args.cache_dir,
|
|
**dataset_args,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
|
|
if "validation" not in dataset.keys():
|
|
dataset["validation"] = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
split=f"train[:{data_args.validation_split_percentage}%]",
|
|
cache_dir=model_args.cache_dir,
|
|
**dataset_args,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
dataset["train"] = load_dataset(
|
|
extension,
|
|
data_files=data_files,
|
|
split=f"train[{data_args.validation_split_percentage}%:]",
|
|
cache_dir=model_args.cache_dir,
|
|
**dataset_args,
|
|
token=model_args.token,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
# Load pretrained model and tokenizer
|
|
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
if model_args.config_name:
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
elif model_args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
else:
|
|
config = CONFIG_MAPPING[model_args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
|
|
if model_args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
elif model_args.model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
if model_args.model_name_or_path:
|
|
model = FlaxAutoModelForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
seed=training_args.seed,
|
|
dtype=getattr(jnp, model_args.dtype),
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
else:
|
|
model = FlaxAutoModelForCausalLM.from_config(
|
|
config,
|
|
seed=training_args.seed,
|
|
dtype=getattr(jnp, model_args.dtype),
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
|
|
# Preprocessing the datasets.
|
|
# First we tokenize all the texts.
|
|
if training_args.do_train:
|
|
column_names = dataset["train"].column_names
|
|
else:
|
|
column_names = dataset["validation"].column_names
|
|
text_column_name = "text" if "text" in column_names else column_names[0]
|
|
|
|
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
|
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
|
|
|
def tokenize_function(examples):
|
|
with CaptureLogger(tok_logger) as cl:
|
|
output = tokenizer(examples[text_column_name])
|
|
# clm input could be much much longer than block_size
|
|
if "Token indices sequence length is longer than the" in cl.out:
|
|
tok_logger.warning(
|
|
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
|
|
" before being passed to the model."
|
|
)
|
|
return output
|
|
|
|
tokenized_datasets = dataset.map(
|
|
tokenize_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=column_names,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
if data_args.block_size is None:
|
|
block_size = tokenizer.model_max_length
|
|
if block_size > config.max_position_embeddings:
|
|
logger.warning(
|
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
|
f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx."
|
|
)
|
|
block_size = min(1024, config.max_position_embeddings)
|
|
else:
|
|
if data_args.block_size > tokenizer.model_max_length:
|
|
logger.warning(
|
|
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
|
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
|
|
)
|
|
block_size = min(data_args.block_size, tokenizer.model_max_length)
|
|
|
|
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
|
def group_texts(examples):
|
|
# Concatenate all texts.
|
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
|
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
|
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
|
# customize this part to your needs.
|
|
if total_length >= block_size:
|
|
total_length = (total_length // block_size) * block_size
|
|
# Split by chunks of max_len.
|
|
result = {
|
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
|
for k, t in concatenated_examples.items()
|
|
}
|
|
result["labels"] = result["input_ids"].copy()
|
|
return result
|
|
|
|
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
|
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
|
# to preprocess.
|
|
#
|
|
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
|
# https://huggingface.co/docs/datasets/process#map
|
|
|
|
lm_datasets = tokenized_datasets.map(
|
|
group_texts,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
if training_args.do_train:
|
|
if "train" not in tokenized_datasets:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = lm_datasets["train"]
|
|
if data_args.max_train_samples is not None:
|
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
|
train_dataset = train_dataset.select(range(max_train_samples))
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in tokenized_datasets:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
eval_dataset = lm_datasets["validation"]
|
|
if data_args.max_eval_samples is not None:
|
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
|
|
|
# Enable tensorboard only on the master node
|
|
has_tensorboard = is_tensorboard_available()
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
try:
|
|
from flax.metrics.tensorboard import SummaryWriter
|
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
|
except ImportError as ie:
|
|
has_tensorboard = False
|
|
logger.warning(
|
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
|
)
|
|
else:
|
|
logger.warning(
|
|
"Unable to display metrics through TensorBoard because the package is not installed: "
|
|
"Please run pip install tensorboard to enable."
|
|
)
|
|
|
|
# Initialize our training
|
|
rng = jax.random.PRNGKey(training_args.seed)
|
|
rng, dropout_rng = jax.random.split(rng)
|
|
|
|
# Store some constant
|
|
num_epochs = int(training_args.num_train_epochs)
|
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
|
eval_batch_size = per_device_eval_batch_size * jax.device_count()
|
|
steps_per_epoch = len(train_dataset) // train_batch_size
|
|
total_train_steps = steps_per_epoch * num_epochs
|
|
|
|
# Create learning rate schedule
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
|
len(train_dataset),
|
|
train_batch_size,
|
|
training_args.num_train_epochs,
|
|
training_args.warmup_steps,
|
|
training_args.learning_rate,
|
|
)
|
|
|
|
# We use Optax's "masking" functionality to not apply weight decay
|
|
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
|
# mask boolean with the same structure as the parameters.
|
|
# The mask is True for parameters that should be decayed.
|
|
def decay_mask_fn(params):
|
|
flat_params = traverse_util.flatten_dict(params)
|
|
# find out all LayerNorm parameters
|
|
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
|
|
layer_norm_named_params = {
|
|
layer[-2:]
|
|
for layer_norm_name in layer_norm_candidates
|
|
for layer in flat_params.keys()
|
|
if layer_norm_name in "".join(layer).lower()
|
|
}
|
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
|
|
return traverse_util.unflatten_dict(flat_mask)
|
|
|
|
# create adam optimizer
|
|
if training_args.adafactor:
|
|
# We use the default parameters here to initialize adafactor,
|
|
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
|
optimizer = optax.adafactor(
|
|
learning_rate=linear_decay_lr_schedule_fn,
|
|
)
|
|
else:
|
|
optimizer = optax.adamw(
|
|
learning_rate=linear_decay_lr_schedule_fn,
|
|
b1=training_args.adam_beta1,
|
|
b2=training_args.adam_beta2,
|
|
eps=training_args.adam_epsilon,
|
|
weight_decay=training_args.weight_decay,
|
|
mask=decay_mask_fn,
|
|
)
|
|
|
|
# Setup train state
|
|
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
|
|
|
|
def loss_fn(logits, labels):
|
|
shift_logits = logits[..., :-1, :]
|
|
shift_labels = labels[..., 1:]
|
|
loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1]))
|
|
return loss.mean()
|
|
|
|
# Define gradient update step fn
|
|
def train_step(state, batch):
|
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
|
|
|
def compute_loss(params):
|
|
labels = batch.pop("labels")
|
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
|
loss = loss_fn(logits, labels)
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(compute_loss)
|
|
loss, grad = grad_fn(state.params)
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
|
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
|
|
return new_state, metrics
|
|
|
|
# Define eval fn
|
|
def eval_step(params, batch):
|
|
labels = batch.pop("labels")
|
|
logits = model(**batch, params=params, train=False)[0]
|
|
loss = loss_fn(logits, labels)
|
|
|
|
# summarize metrics
|
|
metrics = {"loss": loss}
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
return metrics
|
|
|
|
# Create parallel version of the train and eval step
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
|
p_eval_step = jax.pmap(eval_step, "batch")
|
|
|
|
# Replicate the train state on each device
|
|
state = state.replicate()
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {num_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
|
logger.info(f" Total optimization steps = {total_train_steps}")
|
|
|
|
train_time = 0
|
|
train_metrics = []
|
|
epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0)
|
|
for epoch in epochs:
|
|
# ======================== Training ================================
|
|
train_start = time.time()
|
|
|
|
# Create sampling rng
|
|
rng, input_rng = jax.random.split(rng)
|
|
|
|
# Generate an epoch by shuffling sampling indices from the train dataset
|
|
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
|
|
steps_per_epoch = len(train_dataset) // train_batch_size
|
|
# train
|
|
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
|
|
batch = next(train_loader)
|
|
batch = shard(batch)
|
|
state, train_metric = p_train_step(state, batch)
|
|
train_metrics.append(train_metric)
|
|
|
|
cur_step = epoch * (len(train_dataset) // train_batch_size) + step
|
|
|
|
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
|
# Save metrics
|
|
train_metric = unreplicate(train_metric)
|
|
train_time += time.time() - train_start
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
|
|
|
epochs.write(
|
|
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
|
|
f" {train_metric['learning_rate'].mean()})"
|
|
)
|
|
|
|
train_metrics = []
|
|
|
|
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
|
|
# ======================== Evaluating ==============================
|
|
eval_metrics = []
|
|
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
|
|
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
|
|
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
|
|
# Model forward
|
|
batch = next(eval_loader)
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
|
|
state.params, batch, min_device_batch=per_device_eval_batch_size
|
|
)
|
|
eval_metrics.append(metrics)
|
|
|
|
# normalize eval metrics
|
|
eval_metrics = get_metrics(eval_metrics)
|
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
|
|
|
|
try:
|
|
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
|
|
except OverflowError:
|
|
eval_metrics["perplexity"] = float("inf")
|
|
|
|
# Print metrics and update progress bar
|
|
desc = (
|
|
f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:"
|
|
f" {eval_metrics['perplexity']})"
|
|
)
|
|
epochs.write(desc)
|
|
epochs.desc = desc
|
|
|
|
# Save metrics
|
|
if has_tensorboard and jax.process_index() == 0:
|
|
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
|
|
|
if cur_step % training_args.save_steps == 0 and cur_step > 0:
|
|
# save checkpoint after each epoch and push checkpoint to the hub
|
|
if jax.process_index() == 0:
|
|
params = jax.device_get(unreplicate(state.params))
|
|
model.save_pretrained(training_args.output_dir, params=params)
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
api.upload_folder(
|
|
commit_message=f"Saving weights and logs of step {cur_step}",
|
|
folder_path=training_args.output_dir,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
token=training_args.hub_token,
|
|
)
|
|
# Eval after training
|
|
if training_args.do_eval:
|
|
eval_metrics = []
|
|
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
|
|
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
|
|
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
|
|
# Model forward
|
|
batch = next(eval_loader)
|
|
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
|
|
state.params, batch, min_device_batch=per_device_eval_batch_size
|
|
)
|
|
eval_metrics.append(metrics)
|
|
|
|
# normalize eval metrics
|
|
eval_metrics = get_metrics(eval_metrics)
|
|
eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics)
|
|
|
|
try:
|
|
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
|
|
except OverflowError:
|
|
eval_metrics["perplexity"] = float("inf")
|
|
|
|
if jax.process_index() == 0:
|
|
eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
|
|
path = os.path.join(training_args.output_dir, "eval_results.json")
|
|
with open(path, "w") as f:
|
|
json.dump(eval_metrics, f, indent=4, sort_keys=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|