172 lines
6.3 KiB
Python
172 lines
6.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, EetqConfig, OPTForCausalLM
|
|
from transformers.testing_utils import (
|
|
require_accelerate,
|
|
require_eetq,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_accelerate_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
|
|
@require_torch_gpu
|
|
class EetqConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
|
|
"""
|
|
quantization_config = EetqConfig()
|
|
config_to_dict = quantization_config.to_dict()
|
|
|
|
for key in config_to_dict:
|
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
|
|
|
|
def test_from_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a dict and converts it to a config object, the config object is the same as the dict
|
|
"""
|
|
dict = {"modules_to_not_convert": ["lm_head.weight"], "quant_method": "eetq", "weights": "int8"}
|
|
quantization_config = EetqConfig.from_dict(dict)
|
|
|
|
self.assertEqual(dict["modules_to_not_convert"], quantization_config.modules_to_not_convert)
|
|
self.assertEqual(dict["quant_method"], quantization_config.quant_method)
|
|
self.assertEqual(dict["weights"], quantization_config.weights)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_eetq
|
|
@require_accelerate
|
|
class EetqTest(unittest.TestCase):
|
|
model_name = "facebook/opt-350m"
|
|
|
|
input_text = "What are we having for dinner?"
|
|
max_new_tokens = 9
|
|
|
|
EXPECTED_OUTPUT = "What are we having for dinner?\nI'm having a steak and a salad"
|
|
|
|
device_map = "cuda"
|
|
|
|
# called only once for all test in this class
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""
|
|
Setup quantized model
|
|
"""
|
|
quantization_config = EetqConfig(weights="int8")
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
|
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
cls.model_name, device_map=cls.device_map, quantization_config=quantization_config
|
|
)
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
def test_quantized_model_conversion(self):
|
|
"""
|
|
Simple test that checks if the quantized model has been converted properly
|
|
"""
|
|
from eetq import EetqLinear
|
|
|
|
from transformers.integrations import replace_with_eetq_linear
|
|
|
|
model_id = "facebook/opt-350m"
|
|
config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
|
|
quantization_config = EetqConfig(weights="int8")
|
|
|
|
with init_empty_weights():
|
|
model = OPTForCausalLM(config)
|
|
|
|
nb_linears = 0
|
|
for module in model.modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
nb_linears += 1
|
|
|
|
model = replace_with_eetq_linear(model, quantization_config=quantization_config)
|
|
nb_eetq_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, EetqLinear):
|
|
nb_eetq_linear += 1
|
|
|
|
self.assertEqual(nb_linears - 1, nb_eetq_linear)
|
|
|
|
# Try with `linear_weights_not_to_quantize`
|
|
with init_empty_weights():
|
|
model = OPTForCausalLM(config)
|
|
quantization_config = EetqConfig(modules_to_not_convert=["fc1"])
|
|
model = replace_with_eetq_linear(model, quantization_config=quantization_config)
|
|
nb_eetq_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, EetqLinear):
|
|
nb_eetq_linear += 1
|
|
|
|
self.assertEqual(nb_linears - 25, nb_eetq_linear)
|
|
|
|
def test_quantized_model(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
def test_save_pretrained(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly after being saved and loaded
|
|
"""
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
self.quantized_model.save_pretrained(tmpdirname)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=self.device_map)
|
|
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
@require_torch_multi_gpu
|
|
def test_quantized_model_multi_gpu(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly with multiple GPUs
|
|
set CUDA_VISIBLE_DEVICES=0,1 if you have more than 2 GPUS
|
|
"""
|
|
input_ids = self.tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
quantization_config = EetqConfig()
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name, device_map="auto", quantization_config=quantization_config
|
|
)
|
|
self.assertTrue(set(quantized_model.hf_device_map.values()) == {0, 1})
|
|
|
|
output = quantized_model.generate(**input_ids, max_new_tokens=self.max_new_tokens)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|