136 lines
4.6 KiB
Python
136 lines
4.6 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
|
from transformers.pipelines import AudioClassificationPipeline, pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_torchaudio,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
@is_pipeline_test
|
|
class AudioClassificationPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=processor)
|
|
|
|
# test with a raw waveform
|
|
audio = np.zeros((34000,))
|
|
audio2 = np.zeros((14000,))
|
|
return audio_classifier, [audio2, audio]
|
|
|
|
def run_pipeline_test(self, audio_classifier, examples):
|
|
audio2, audio = examples
|
|
output = audio_classifier(audio)
|
|
# by default a model is initialized with num_labels=2
|
|
self.assertEqual(
|
|
output,
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
)
|
|
output = audio_classifier(audio, top_k=1)
|
|
self.assertEqual(
|
|
output,
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
)
|
|
|
|
self.run_torchaudio(audio_classifier)
|
|
|
|
@require_torchaudio
|
|
def run_torchaudio(self, audio_classifier):
|
|
import datasets
|
|
|
|
# test with a local file
|
|
dataset = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
audio = dataset[0]["audio"]["array"]
|
|
output = audio_classifier(audio)
|
|
self.assertEqual(
|
|
output,
|
|
[
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
{"score": ANY(float), "label": ANY(str)},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
model = "anton-l/wav2vec2-random-tiny-classifier"
|
|
|
|
audio_classifier = pipeline("audio-classification", model=model)
|
|
|
|
audio = np.ones((8000,))
|
|
output = audio_classifier(audio, top_k=4)
|
|
|
|
EXPECTED_OUTPUT = [
|
|
{"score": 0.0842, "label": "no"},
|
|
{"score": 0.0838, "label": "up"},
|
|
{"score": 0.0837, "label": "go"},
|
|
{"score": 0.0834, "label": "right"},
|
|
]
|
|
EXPECTED_OUTPUT_PT_2 = [
|
|
{"score": 0.0845, "label": "stop"},
|
|
{"score": 0.0844, "label": "on"},
|
|
{"score": 0.0841, "label": "right"},
|
|
{"score": 0.0834, "label": "left"},
|
|
]
|
|
self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])
|
|
|
|
audio_dict = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate}
|
|
output = audio_classifier(audio_dict, top_k=4)
|
|
self.assertIn(nested_simplify(output, decimals=4), [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2])
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_large_model_pt(self):
|
|
import datasets
|
|
|
|
model = "superb/wav2vec2-base-superb-ks"
|
|
|
|
audio_classifier = pipeline("audio-classification", model=model)
|
|
dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test")
|
|
|
|
audio = np.array(dataset[3]["speech"], dtype=np.float32)
|
|
output = audio_classifier(audio, top_k=4)
|
|
self.assertEqual(
|
|
nested_simplify(output, decimals=3),
|
|
[
|
|
{"score": 0.981, "label": "go"},
|
|
{"score": 0.007, "label": "up"},
|
|
{"score": 0.006, "label": "_unknown_"},
|
|
{"score": 0.001, "label": "down"},
|
|
],
|
|
)
|
|
|
|
@require_tf
|
|
@unittest.skip("Audio classification is not implemented for TF")
|
|
def test_small_model_tf(self):
|
|
pass
|