transformers/tests/models/vitmatte/test_modeling_vitmatte.py

269 lines
9.5 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VitMatte model."""
import unittest
from huggingface_hub import hf_hub_download
from transformers import VitMatteConfig
from transformers.testing_utils import (
require_torch,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import VitDetConfig, VitMatteForImageMatting
if is_vision_available():
from PIL import Image
from transformers import VitMatteImageProcessor
class VitMatteModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=16,
num_channels=4,
is_training=True,
use_labels=False,
hidden_size=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_act="gelu",
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
out_features=["stage1"],
fusion_hidden_sizes=[128, 64, 32, 16],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_features = out_features
self.fusion_hidden_sizes = fusion_hidden_sizes
self.seq_length = (self.image_size // self.patch_size) ** 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
raise NotImplementedError("Training is not yet supported")
config = self.get_config()
return config, pixel_values, labels
def get_backbone_config(self):
return VitDetConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_size=self.hidden_size,
is_training=self.is_training,
hidden_act=self.hidden_act,
out_features=self.out_features,
)
def get_config(self):
return VitMatteConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
hidden_size=self.hidden_size,
fusion_hidden_sizes=self.fusion_hidden_sizes,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VitMatteForImageMatting(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else ()
pipeline_model_mapping = {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VitMatteModelTester(self)
self.config_tester = ConfigTester(self, config_class=VitMatteConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="VitMatte does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ViTMatte does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "hustvl/vitmatte-small-composition-1k"
model = VitMatteForImageMatting.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[2, 2],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
print("Hello we're here")
check_hidden_states_output(inputs_dict, config, model_class)
@require_torch
class VitMatteModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device)
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
)
image = Image.open(filepath).convert("RGB")
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
)
trimap = Image.open(filepath).convert("L")
# prepare image + trimap for the model
inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device)
with torch.no_grad():
alphas = model(**inputs).alphas
expected_shape = torch.Size((1, 1, 640, 960))
self.assertEqual(alphas.shape, expected_shape)
expected_slice = torch.tensor(
[[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device
)
self.assertTrue(torch.allclose(alphas[0, 0, :3, :3], expected_slice, atol=1e-4))