transformers/tests/models/tvp/test_modeling_tvp.py

267 lines
10 KiB
Python

# coding=utf-8
# Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch TVP model."""
import unittest
from transformers import ResNetConfig, TvpConfig
from transformers.testing_utils import require_torch, require_vision, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import TvpForVideoGrounding, TvpModel
if is_vision_available():
from PIL import Image
from transformers import TvpImageProcessor
# Copied from test.models.videomae.test_modeling_videomae.VideoMAEModelTester with VideoMAE->TVP
class TVPModelTester:
def __init__(
self,
parent,
batch_size=1,
seq_length=2,
alpha=1.0,
beta=0.1,
visual_prompter_type="framepad",
visual_prompter_apply="replace",
num_frames=2,
max_img_size=448,
visual_prompt_size=96,
vocab_size=100,
hidden_size=32,
intermediate_size=32,
num_hidden_layers=2,
num_attention_heads=4,
max_position_embeddings=30,
max_grid_col_position_embeddings=30,
max_grid_row_position_embeddings=30,
hidden_dropout_prob=0.1,
hidden_act="gelu",
layer_norm_eps=1e-12,
initializer_range=0.02,
pad_token_id=0,
type_vocab_size=2,
attention_probs_dropout_prob=0.1,
):
self.parent = parent
self.batch_size = batch_size
self.input_id_length = seq_length
self.seq_length = seq_length + 10 + 784 # include text prompt length and visual input length
self.alpha = alpha
self.beta = beta
self.visual_prompter_type = visual_prompter_type
self.visual_prompter_apply = visual_prompter_apply
self.num_frames = num_frames
self.max_img_size = max_img_size
self.visual_prompt_size = visual_prompt_size
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.max_grid_col_position_embeddings = max_grid_col_position_embeddings
self.max_grid_row_position_embeddings = max_grid_row_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.pad_token_id = pad_token_id
self.type_vocab_size = type_vocab_size
self.is_training = False
self.num_channels = 3
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.input_id_length], self.vocab_size)
attention_mask = random_attention_mask([self.batch_size, self.input_id_length])
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.max_img_size, self.max_img_size]
)
config = self.get_config()
return (config, input_ids, pixel_values, attention_mask)
def get_config(self):
resnet_config = ResNetConfig(
num_channels=3,
embeddings_size=64,
hidden_sizes=[64, 128],
depths=[2, 2],
hidden_act="relu",
out_features=["stage2"],
out_indices=[2],
)
return TvpConfig(
backbone_config=resnet_config,
backbone=None,
alpha=self.alpha,
beta=self.beta,
visual_prompter_type=self.visual_prompter_type,
visual_prompter_apply=self.visual_prompter_apply,
num_frames=self.num_frames,
max_img_size=self.max_img_size,
visual_prompt_size=self.visual_prompt_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
max_grid_col_position_embeddings=self.max_grid_col_position_embeddings,
max_grid_row_position_embeddings=self.max_grid_row_position_embeddings,
layer_norm_eps=self.layer_norm_eps,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
type_vocab_size=self.type_vocab_size,
)
def create_and_check_model(self, config, input_ids, pixel_values, attention_mask):
model = TvpModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, pixel_values, attention_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, pixel_values, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "pixel_values": pixel_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class TVPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as TVP does not use, inputs_embeds.
The seq_length in TVP contain textual and visual inputs, and prompt.
"""
all_model_classes = (TvpModel, TvpForVideoGrounding) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TvpModel, "temporal-video-grounding": TvpForVideoGrounding}
if is_torch_available()
else {}
)
# TODO: Enable this once this model gets more usage
test_torchscript = False
def setUp(self):
self.model_tester = TVPModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="TVP does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="TVPModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for TVP
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# params are randomly initialized.
self.assertAlmostEqual(
param.data.mean().item(),
0.0,
delta=1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_vision
@require_torch
class TvpModelIntegrationTests(unittest.TestCase):
@cached_property
def default_image_processor(self):
return TvpImageProcessor.from_pretrained("Jiqing/tiny-random-tvp") if is_vision_available() else None
def test_inference_no_head(self):
model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt")
input_ids = torch.tensor([[1, 2]])
attention_mask = torch.tensor([[1, 1]])
encoding.update({"input_ids": input_ids, "attention_mask": attention_mask})
encoding.to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 796, 128))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[-0.4902, -0.4121, -1.7872], [-0.2184, 2.1211, -0.9371], [0.1180, 0.5003, -0.1727]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_with_head(self):
model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
encoding = image_processor(images=image, return_tensors="pt")
input_ids = torch.tensor([[1, 2]])
attention_mask = torch.tensor([[1, 1]])
encoding.update({"input_ids": input_ids, "attention_mask": attention_mask})
encoding.to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 2))
assert outputs.logits.shape == expected_shape
expected_slice = torch.tensor([[0.5061, 0.4988]]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits, expected_slice, atol=1e-4))