333 lines
14 KiB
Python
333 lines
14 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
|
|
from transformers.testing_utils import (
|
|
get_tests_dir,
|
|
nested_simplify,
|
|
require_sentencepiece,
|
|
require_tokenizers,
|
|
require_torch,
|
|
)
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.models.mbart.modeling_mbart import shift_tokens_right
|
|
|
|
EN_CODE = 250004
|
|
RO_CODE = 250020
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "facebook/mbart-large-en-ro"
|
|
tokenizer_class = MBartTokenizer
|
|
rust_tokenizer_class = MBartTokenizerFast
|
|
test_rust_tokenizer = True
|
|
test_sentencepiece = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
|
|
|
|
self.assertListEqual(
|
|
tokenizer.convert_tokens_to_ids(tokens),
|
|
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
|
|
)
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"9",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"é",
|
|
".",
|
|
],
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(
|
|
ids,
|
|
[
|
|
value + tokenizer.fairseq_offset
|
|
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
|
|
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
|
|
],
|
|
)
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
[
|
|
SPIECE_UNDERLINE + "I",
|
|
SPIECE_UNDERLINE + "was",
|
|
SPIECE_UNDERLINE + "b",
|
|
"or",
|
|
"n",
|
|
SPIECE_UNDERLINE + "in",
|
|
SPIECE_UNDERLINE + "",
|
|
"<unk>",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
",",
|
|
SPIECE_UNDERLINE + "and",
|
|
SPIECE_UNDERLINE + "this",
|
|
SPIECE_UNDERLINE + "is",
|
|
SPIECE_UNDERLINE + "f",
|
|
"al",
|
|
"s",
|
|
"<unk>",
|
|
".",
|
|
],
|
|
)
|
|
|
|
# overwrite from test_tokenization_common to speed up test
|
|
def test_save_pretrained(self):
|
|
if not self.test_slow_tokenizer:
|
|
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
|
|
return
|
|
|
|
self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {})
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it save with the same files + the tokenizer.json file for the fast one
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
|
|
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=True
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it save with the same files
|
|
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
# Save tokenizer rust, legacy_format=False
|
|
tmpdirname2 = tempfile.mkdtemp()
|
|
|
|
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
|
|
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
|
|
|
|
# Checks it saved the tokenizer.json file
|
|
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
|
|
|
|
# Checks everything loads correctly in the same way
|
|
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
|
|
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
|
|
|
|
# Check special tokens are set accordingly on Rust and Python
|
|
for key in tokenizer_pp.special_tokens_map:
|
|
self.assertTrue(hasattr(tokenizer_rp, key))
|
|
|
|
shutil.rmtree(tmpdirname2)
|
|
|
|
@unittest.skip("Need to fix this after #26538")
|
|
def test_training_new_tokenizer(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class MBartEnroIntegrationTest(unittest.TestCase):
|
|
checkpoint_name = "facebook/mbart-large-en-ro"
|
|
src_text = [
|
|
" UN Chief Says There Is No Military Solution in Syria",
|
|
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
|
|
]
|
|
tgt_text = [
|
|
"Şeful ONU declară că nu există o soluţie militară în Siria",
|
|
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
|
|
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
|
|
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
|
|
]
|
|
expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tokenizer: MBartTokenizer = MBartTokenizer.from_pretrained(
|
|
cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
|
|
)
|
|
cls.pad_token_id = 1
|
|
return cls
|
|
|
|
def check_language_codes(self):
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
|
|
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)
|
|
|
|
def test_enro_tokenizer_batch_encode_plus(self):
|
|
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
|
|
self.assertListEqual(self.expected_src_tokens, ids)
|
|
|
|
def test_enro_tokenizer_decode_ignores_language_codes(self):
|
|
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
|
|
generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
|
|
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
|
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
|
|
self.assertEqual(result, expected_romanian)
|
|
self.assertNotIn(self.tokenizer.eos_token, result)
|
|
|
|
def test_enro_tokenizer_truncation(self):
|
|
src_text = ["this is gunna be a long sentence " * 20]
|
|
assert isinstance(src_text[0], str)
|
|
desired_max_length = 10
|
|
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
|
|
self.assertEqual(ids[-2], 2)
|
|
self.assertEqual(ids[-1], EN_CODE)
|
|
self.assertEqual(len(ids), desired_max_length)
|
|
|
|
def test_mask_token(self):
|
|
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250026, 250001])
|
|
|
|
def test_special_tokens_unaffacted_by_save_load(self):
|
|
tmpdirname = tempfile.mkdtemp()
|
|
original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
|
|
self.tokenizer.save_pretrained(tmpdirname)
|
|
new_tok = MBartTokenizer.from_pretrained(tmpdirname)
|
|
self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
|
|
|
|
@require_torch
|
|
def test_batch_fairseq_parity(self):
|
|
batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt")
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
|
|
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
|
|
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
|
|
assert batch.decoder_input_ids[1][-1] == 2
|
|
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
|
|
|
|
@require_torch
|
|
def test_enro_tokenizer_prepare_batch(self):
|
|
batch = self.tokenizer(
|
|
self.src_text,
|
|
text_target=self.tgt_text,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=len(self.expected_src_tokens),
|
|
return_tensors="pt",
|
|
)
|
|
|
|
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id)
|
|
|
|
self.assertIsInstance(batch, BatchEncoding)
|
|
|
|
self.assertEqual((2, 14), batch.input_ids.shape)
|
|
self.assertEqual((2, 14), batch.attention_mask.shape)
|
|
result = batch.input_ids.tolist()[0]
|
|
self.assertListEqual(self.expected_src_tokens, result)
|
|
self.assertEqual(2, batch.decoder_input_ids[0, -1]) # EOS
|
|
# Test that special tokens are reset
|
|
self.assertEqual(self.tokenizer.prefix_tokens, [])
|
|
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE])
|
|
|
|
def test_seq2seq_max_length(self):
|
|
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
|
|
targets = self.tokenizer(
|
|
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
|
|
)
|
|
labels = targets["input_ids"]
|
|
batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)
|
|
|
|
self.assertEqual(batch.input_ids.shape[1], 3)
|
|
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
|
|
|
|
@require_torch
|
|
def test_tokenizer_translation(self):
|
|
inputs = self.tokenizer._build_translation_inputs(
|
|
"A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR"
|
|
)
|
|
|
|
self.assertEqual(
|
|
nested_simplify(inputs),
|
|
{
|
|
# A, test, EOS, en_XX
|
|
"input_ids": [[62, 3034, 2, 250004]],
|
|
"attention_mask": [[1, 1, 1, 1]],
|
|
# ar_AR
|
|
"forced_bos_token_id": 250001,
|
|
},
|
|
)
|