354 lines
14 KiB
Python
354 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
import os
|
|
import unittest
|
|
|
|
from transformers import AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast
|
|
from transformers.models.gpt2.tokenization_gpt2 import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_jinja, require_tokenizers
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
@require_tokenizers
|
|
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "openai-community/gpt2"
|
|
tokenizer_class = GPT2Tokenizer
|
|
rust_tokenizer_class = GPT2TokenizerFast
|
|
test_rust_tokenizer = True
|
|
from_pretrained_kwargs = {"add_prefix_space": True}
|
|
test_seq2seq = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
|
|
vocab = [
|
|
"l",
|
|
"o",
|
|
"w",
|
|
"e",
|
|
"r",
|
|
"s",
|
|
"t",
|
|
"i",
|
|
"d",
|
|
"n",
|
|
"\u0120",
|
|
"\u0120l",
|
|
"\u0120n",
|
|
"\u0120lo",
|
|
"\u0120low",
|
|
"er",
|
|
"\u0120lowest",
|
|
"\u0120newer",
|
|
"\u0120wider",
|
|
"<unk>",
|
|
"<|endoftext|>",
|
|
]
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
kwargs.update(self.special_tokens_map)
|
|
return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "lower newer"
|
|
output_text = "lower newer"
|
|
return input_text, output_text
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
|
|
text = "lower newer"
|
|
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
|
|
tokens = tokenizer.tokenize(text, add_prefix_space=True)
|
|
self.assertListEqual(tokens, bpe_tokens)
|
|
|
|
input_tokens = tokens + [tokenizer.unk_token]
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
|
|
sequence = "lower newer"
|
|
|
|
# Testing tokenization
|
|
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
# Testing conversion to ids without special tokens
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing conversion to ids with special tokens
|
|
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
|
|
ids = tokenizer.encode(sequence, add_prefix_space=True)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
# Testing the unknown token
|
|
input_tokens = tokens + [rust_tokenizer.unk_token]
|
|
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
|
|
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
|
|
|
|
def test_pretokenized_inputs(self, *args, **kwargs):
|
|
# It's very difficult to mix/test pretokenization with byte-level
|
|
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
|
|
pass
|
|
|
|
def test_padding(self, max_length=15):
|
|
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
|
|
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
|
|
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input 1", "This is a simple input 2"),
|
|
("This is a simple pair 1", "This is a simple pair 2"),
|
|
]
|
|
|
|
# Simple input tests
|
|
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
|
|
|
|
# Simple input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
s2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
|
|
|
|
# Pair input
|
|
self.assertRaises(
|
|
ValueError,
|
|
tokenizer_r.batch_encode_plus,
|
|
p2,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
)
|
|
|
|
def test_padding_if_pad_token_set_slow(self):
|
|
tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>")
|
|
|
|
# Simple input
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input looooooooong", "This is a simple input"]
|
|
p = ("This is a simple input", "This is a pair")
|
|
p2 = [
|
|
("This is a simple input loooooong", "This is a simple input"),
|
|
("This is a simple pair loooooong", "This is a simple pair"),
|
|
]
|
|
|
|
pad_token_id = tokenizer.pad_token_id
|
|
|
|
out_s = tokenizer(s, padding="max_length", max_length=30, return_tensors="np")
|
|
out_s2 = tokenizer(s2, padding=True, truncate=True, return_tensors="np")
|
|
out_p = tokenizer(*p, padding="max_length", max_length=60, return_tensors="np")
|
|
out_p2 = tokenizer(p2, padding=True, truncate=True, return_tensors="np")
|
|
|
|
# s
|
|
# test single string max_length padding
|
|
self.assertEqual(out_s["input_ids"].shape[-1], 30)
|
|
self.assertTrue(pad_token_id in out_s["input_ids"])
|
|
self.assertTrue(0 in out_s["attention_mask"])
|
|
|
|
# s2
|
|
# test automatic padding
|
|
self.assertEqual(out_s2["input_ids"].shape[-1], 33)
|
|
# long slice doesn't have padding
|
|
self.assertFalse(pad_token_id in out_s2["input_ids"][0])
|
|
self.assertFalse(0 in out_s2["attention_mask"][0])
|
|
# short slice does have padding
|
|
self.assertTrue(pad_token_id in out_s2["input_ids"][1])
|
|
self.assertTrue(0 in out_s2["attention_mask"][1])
|
|
|
|
# p
|
|
# test single pair max_length padding
|
|
self.assertEqual(out_p["input_ids"].shape[-1], 60)
|
|
self.assertTrue(pad_token_id in out_p["input_ids"])
|
|
self.assertTrue(0 in out_p["attention_mask"])
|
|
|
|
# p2
|
|
# test automatic padding pair
|
|
self.assertEqual(out_p2["input_ids"].shape[-1], 52)
|
|
# long slice pair doesn't have padding
|
|
self.assertFalse(pad_token_id in out_p2["input_ids"][0])
|
|
self.assertFalse(0 in out_p2["attention_mask"][0])
|
|
# short slice pair does have padding
|
|
self.assertTrue(pad_token_id in out_p2["input_ids"][1])
|
|
self.assertTrue(0 in out_p2["attention_mask"][1])
|
|
|
|
def test_add_bos_token_slow(self):
|
|
bos_token = "$$$"
|
|
tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname, bos_token=bos_token, add_bos_token=True)
|
|
|
|
s = "This is a simple input"
|
|
s2 = ["This is a simple input 1", "This is a simple input 2"]
|
|
|
|
bos_token_id = tokenizer.bos_token_id
|
|
|
|
out_s = tokenizer(s)
|
|
out_s2 = tokenizer(s2)
|
|
|
|
self.assertEqual(out_s.input_ids[0], bos_token_id)
|
|
self.assertTrue(all(o[0] == bos_token_id for o in out_s2.input_ids))
|
|
|
|
decode_s = tokenizer.decode(out_s.input_ids)
|
|
decode_s2 = tokenizer.batch_decode(out_s2.input_ids)
|
|
|
|
self.assertTrue(decode_s.startswith(bos_token))
|
|
self.assertTrue(all(d.startswith(bos_token) for d in decode_s2))
|
|
|
|
# tokenizer has no padding token
|
|
def test_padding_different_model_input_name(self):
|
|
pass
|
|
|
|
def test_special_tokens_mask_input_pairs_and_bos_token(self):
|
|
# TODO: change to self.get_tokenizers() when the fast version is implemented
|
|
tokenizers = [self.get_tokenizer(do_lower_case=False, add_bos_token=True)]
|
|
for tokenizer in tokenizers:
|
|
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
|
sequence_0 = "Encode this."
|
|
sequence_1 = "This one too please."
|
|
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
|
|
encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
|
|
encoded_sequence_dict = tokenizer.encode_plus(
|
|
sequence_0,
|
|
sequence_1,
|
|
add_special_tokens=True,
|
|
return_special_tokens_mask=True,
|
|
)
|
|
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
|
|
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
|
|
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
|
|
|
|
filtered_sequence = [
|
|
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
|
|
]
|
|
filtered_sequence = [x for x in filtered_sequence if x is not None]
|
|
self.assertEqual(encoded_sequence, filtered_sequence)
|
|
|
|
@require_jinja
|
|
def test_tokenization_for_chat(self):
|
|
tokenizer = GPT2Tokenizer.from_pretrained(self.tmpdirname)
|
|
test_chats = [
|
|
[{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
|
|
[
|
|
{"role": "system", "content": "You are a helpful chatbot."},
|
|
{"role": "user", "content": "Hello!"},
|
|
{"role": "assistant", "content": "Nice to meet you."},
|
|
],
|
|
[{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}],
|
|
]
|
|
tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
|
|
# fmt: off
|
|
expected_tokens = [[20, 1, 20, 10, 20, 4, 3, 10, 20, 10, 20, 3, 0, 20, 20, 20, 0, 10, 20, 20, 20, 6, 20, 1, 6, 20, 20, 20, 3, 0, 0, 1, 20, 20],
|
|
[20, 1, 20, 10, 20, 4, 3, 10, 20, 10, 20, 3, 0, 20, 20, 20, 0, 10, 20, 20, 20, 6, 20, 1, 6, 20, 20, 20, 3, 0, 0, 1, 20, 20, 20, 7, 20, 3, 10, 6, 1, 10, 20, 3, 3, 6, 10, 20, 1, 20, 20, 20],
|
|
[20, 7, 20, 3, 10, 6, 1, 10, 20, 3, 3, 6, 10, 20, 1, 20, 20, 20, 20, 3, 0, 0, 1, 20, 20]]
|
|
# fmt: on
|
|
for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
|
|
self.assertListEqual(tokenized_chat, expected_tokens)
|
|
|
|
|
|
@require_tokenizers
|
|
class OPTTokenizationTest(unittest.TestCase):
|
|
def test_serialize_deserialize_fast_opt(self):
|
|
# More context:
|
|
# https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1
|
|
# https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519
|
|
# https://github.com/huggingface/transformers/pull/17088#discussion_r871246439
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)
|
|
text = "A photo of a cat"
|
|
|
|
tokens_ids = tokenizer.encode(
|
|
text,
|
|
)
|
|
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])
|
|
tokenizer.save_pretrained("test_opt")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("./test_opt")
|
|
tokens_ids = tokenizer.encode(
|
|
text,
|
|
)
|
|
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])
|
|
|
|
def test_fast_slow_equivalence(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=True)
|
|
text = "A photo of a cat"
|
|
|
|
tokens_ids = tokenizer.encode(
|
|
text,
|
|
)
|
|
# Same as above
|
|
self.assertEqual(tokens_ids, [2, 250, 1345, 9, 10, 4758])
|
|
|
|
@unittest.skip("This test is failing because of a bug in the fast tokenizer")
|
|
def test_users_can_modify_bos(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=True)
|
|
|
|
tokenizer.bos_token = "bos"
|
|
tokenizer.bos_token_id = tokenizer.get_vocab()["bos"]
|
|
|
|
text = "A photo of a cat"
|
|
tokens_ids = tokenizer.encode(
|
|
text,
|
|
)
|
|
# We changed the bos token
|
|
self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])
|
|
tokenizer.save_pretrained("./tok")
|
|
tokenizer = AutoTokenizer.from_pretrained("./tok")
|
|
self.assertTrue(tokenizer.is_fast)
|
|
tokens_ids = tokenizer.encode(
|
|
text,
|
|
)
|
|
self.assertEqual(tokens_ids, [31957, 250, 1345, 9, 10, 4758])
|