123 lines
5.8 KiB
Python
123 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from queue import Empty
|
|
from threading import Thread
|
|
|
|
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
|
|
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
|
|
|
|
from ..test_modeling_common import ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
|
|
@require_torch
|
|
class StreamerTester(unittest.TestCase):
|
|
def test_text_streamer_matches_non_streaming(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
|
|
model.config.eos_token_id = -1
|
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
|
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
|
|
greedy_text = tokenizer.decode(greedy_ids[0])
|
|
|
|
with CaptureStdout() as cs:
|
|
streamer = TextStreamer(tokenizer)
|
|
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
|
|
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
|
|
streamer_text = cs.out[:-1]
|
|
|
|
self.assertEqual(streamer_text, greedy_text)
|
|
|
|
def test_iterator_streamer_matches_non_streaming(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
|
|
model.config.eos_token_id = -1
|
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
|
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
|
|
greedy_text = tokenizer.decode(greedy_ids[0])
|
|
|
|
streamer = TextIteratorStreamer(tokenizer)
|
|
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
streamer_text = ""
|
|
for new_text in streamer:
|
|
streamer_text += new_text
|
|
|
|
self.assertEqual(streamer_text, greedy_text)
|
|
|
|
def test_text_streamer_skip_prompt(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
|
|
model.config.eos_token_id = -1
|
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
|
|
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False)
|
|
new_greedy_ids = greedy_ids[:, input_ids.shape[1] :]
|
|
new_greedy_text = tokenizer.decode(new_greedy_ids[0])
|
|
|
|
with CaptureStdout() as cs:
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
|
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer)
|
|
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
|
|
streamer_text = cs.out[:-1]
|
|
|
|
self.assertEqual(streamer_text, new_greedy_text)
|
|
|
|
def test_text_streamer_decode_kwargs(self):
|
|
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
|
|
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
|
|
# `skip_special_tokens=True` has no effect on them
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
|
|
model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2").to(torch_device)
|
|
model.config.eos_token_id = -1
|
|
|
|
input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id
|
|
with CaptureStdout() as cs:
|
|
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
|
|
model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer)
|
|
|
|
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
|
|
# re-tokenized, must only contain one token
|
|
streamer_text = cs.out[:-1] # Remove the final "\n"
|
|
streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt")
|
|
self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1))
|
|
|
|
def test_iterator_streamer_timeout(self):
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
|
|
model.config.eos_token_id = -1
|
|
|
|
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device)
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=0.001)
|
|
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
|
|
# The streamer will timeout after 0.001 seconds, so an exception will be raised
|
|
with self.assertRaises(Empty):
|
|
streamer_text = ""
|
|
for new_text in streamer:
|
|
streamer_text += new_text
|