265 lines
9.3 KiB
Python
265 lines
9.3 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from datasets import load_dataset
|
|
|
|
from transformers.testing_utils import (
|
|
require_essentia,
|
|
require_librosa,
|
|
require_pretty_midi,
|
|
require_scipy,
|
|
require_torch,
|
|
)
|
|
from transformers.tokenization_utils import BatchEncoding
|
|
from transformers.utils.import_utils import (
|
|
is_essentia_available,
|
|
is_librosa_available,
|
|
is_pretty_midi_available,
|
|
is_scipy_available,
|
|
is_torch_available,
|
|
)
|
|
|
|
|
|
requirements_available = (
|
|
is_torch_available()
|
|
and is_essentia_available()
|
|
and is_scipy_available()
|
|
and is_librosa_available()
|
|
and is_pretty_midi_available()
|
|
)
|
|
|
|
if requirements_available:
|
|
import pretty_midi
|
|
|
|
from transformers import (
|
|
Pop2PianoFeatureExtractor,
|
|
Pop2PianoForConditionalGeneration,
|
|
Pop2PianoProcessor,
|
|
Pop2PianoTokenizer,
|
|
)
|
|
|
|
|
|
@require_scipy
|
|
@require_torch
|
|
@require_librosa
|
|
@require_essentia
|
|
@require_pretty_midi
|
|
class Pop2PianoProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
|
|
tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
|
|
processor = Pop2PianoProcessor(feature_extractor, tokenizer)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return Pop2PianoTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return Pop2PianoFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=self.get_tokenizer(),
|
|
feature_extractor=self.get_feature_extractor(),
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(
|
|
unk_token="-1",
|
|
eos_token="1",
|
|
pad_token="0",
|
|
bos_token="2",
|
|
)
|
|
feature_extractor_add_kwargs = self.get_feature_extractor()
|
|
|
|
processor = Pop2PianoProcessor.from_pretrained(
|
|
self.tmpdirname,
|
|
unk_token="-1",
|
|
eos_token="1",
|
|
pad_token="0",
|
|
bos_token="2",
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, Pop2PianoTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, Pop2PianoFeatureExtractor)
|
|
|
|
def get_inputs(self):
|
|
"""get inputs for both feature extractor and tokenizer"""
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
speech_samples = ds.sort("id").select([0])["audio"]
|
|
input_speech = [x["array"] for x in speech_samples][0]
|
|
sampling_rate = [x["sampling_rate"] for x in speech_samples][0]
|
|
|
|
feature_extractor_outputs = self.get_feature_extractor()(
|
|
audio=input_speech, sampling_rate=sampling_rate, return_tensors="pt"
|
|
)
|
|
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
|
|
token_ids = model.generate(input_features=feature_extractor_outputs["input_features"], composer="composer1")
|
|
dummy_notes = [
|
|
[
|
|
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
|
|
pretty_midi.Note(start=0.673379, end=0.905578, pitch=73, velocity=77),
|
|
pretty_midi.Note(start=0.905578, end=2.159456, pitch=73, velocity=77),
|
|
pretty_midi.Note(start=1.114558, end=2.159456, pitch=78, velocity=77),
|
|
pretty_midi.Note(start=1.323537, end=1.532517, pitch=80, velocity=77),
|
|
],
|
|
[
|
|
pretty_midi.Note(start=0.441179, end=2.159456, pitch=70, velocity=77),
|
|
],
|
|
]
|
|
|
|
return input_speech, sampling_rate, token_ids, dummy_notes
|
|
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
input_speech, sampling_rate, _, _ = self.get_inputs()
|
|
|
|
feature_extractor_outputs = feature_extractor(
|
|
audio=input_speech, sampling_rate=sampling_rate, return_tensors="np"
|
|
)
|
|
processor_outputs = processor(audio=input_speech, sampling_rate=sampling_rate, return_tensors="np")
|
|
|
|
for key in feature_extractor_outputs.keys():
|
|
self.assertTrue(np.allclose(feature_extractor_outputs[key], processor_outputs[key], atol=1e-4))
|
|
|
|
def test_processor_batch_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
audio, sampling_rate, token_ids, _ = self.get_inputs()
|
|
feature_extractor_output = feature_extractor(audio=audio, sampling_rate=sampling_rate, return_tensors="pt")
|
|
|
|
encoded_processor = processor.batch_decode(
|
|
token_ids=token_ids,
|
|
feature_extractor_output=feature_extractor_output,
|
|
return_midi=True,
|
|
)
|
|
|
|
encoded_tokenizer = tokenizer.batch_decode(
|
|
token_ids=token_ids,
|
|
feature_extractor_output=feature_extractor_output,
|
|
return_midi=True,
|
|
)
|
|
# check start timings
|
|
encoded_processor_start_timings = [token.start for token in encoded_processor["notes"]]
|
|
encoded_tokenizer_start_timings = [token.start for token in encoded_tokenizer["notes"]]
|
|
self.assertListEqual(encoded_processor_start_timings, encoded_tokenizer_start_timings)
|
|
|
|
# check end timings
|
|
encoded_processor_end_timings = [token.end for token in encoded_processor["notes"]]
|
|
encoded_tokenizer_end_timings = [token.end for token in encoded_tokenizer["notes"]]
|
|
self.assertListEqual(encoded_processor_end_timings, encoded_tokenizer_end_timings)
|
|
|
|
# check pitch
|
|
encoded_processor_pitch = [token.pitch for token in encoded_processor["notes"]]
|
|
encoded_tokenizer_pitch = [token.pitch for token in encoded_tokenizer["notes"]]
|
|
self.assertListEqual(encoded_processor_pitch, encoded_tokenizer_pitch)
|
|
|
|
# check velocity
|
|
encoded_processor_velocity = [token.velocity for token in encoded_processor["notes"]]
|
|
encoded_tokenizer_velocity = [token.velocity for token in encoded_tokenizer["notes"]]
|
|
self.assertListEqual(encoded_processor_velocity, encoded_tokenizer_velocity)
|
|
|
|
def test_tokenizer_call(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
_, _, _, notes = self.get_inputs()
|
|
|
|
encoded_processor = processor(
|
|
notes=notes,
|
|
)
|
|
|
|
self.assertTrue(isinstance(encoded_processor, BatchEncoding))
|
|
|
|
def test_processor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
audio, sampling_rate, _, notes = self.get_inputs()
|
|
|
|
inputs = processor(
|
|
audio=audio,
|
|
sampling_rate=sampling_rate,
|
|
notes=notes,
|
|
)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
|
|
)
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_model_input_names(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = Pop2PianoProcessor(
|
|
tokenizer=tokenizer,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
audio, sampling_rate, _, notes = self.get_inputs()
|
|
feature_extractor(audio, sampling_rate, return_tensors="pt")
|
|
|
|
inputs = processor(
|
|
audio=audio,
|
|
sampling_rate=sampling_rate,
|
|
notes=notes,
|
|
)
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_features", "beatsteps", "extrapolated_beatstep", "token_ids"],
|
|
)
|