144 lines
7.3 KiB
Python
144 lines
7.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. and Baidu team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch ErnieM model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import ErnieMTokenizer
|
|
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
|
|
|
|
from ...test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/spiece.model")
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class ErnieMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
from_pretrained_id = "susnato/ernie-m-base_pytorch"
|
|
tokenizer_class = ErnieMTokenizer
|
|
test_seq2seq = False
|
|
test_sentencepiece = True
|
|
test_rust_tokenizer = False
|
|
test_sentencepiece_ignore_case = False
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = ErnieMTokenizer(SAMPLE_VOCAB, unk_token="<unk>", pad_token="<pad>")
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "this is a test"
|
|
output_text = "this is a test"
|
|
return input_text, output_text
|
|
|
|
def test_convert_token_and_id(self):
|
|
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
|
|
token = "<pad>"
|
|
token_id = 0
|
|
|
|
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
|
|
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
|
|
|
|
def test_get_vocab(self):
|
|
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
|
|
|
|
self.assertEqual(vocab_keys[0], "<pad>")
|
|
self.assertEqual(vocab_keys[1], "<unk>")
|
|
self.assertEqual(vocab_keys[-1], "▁eloquent")
|
|
self.assertEqual(len(vocab_keys), 30_000)
|
|
|
|
def test_vocab_size(self):
|
|
self.assertEqual(self.get_tokenizer().vocab_size, 30_000)
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
sequence = "I was born in 92000, and this is falsé."
|
|
|
|
tokens = tokenizer.tokenize(sequence)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
ids = tokenizer.encode(sequence)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = ErnieMTokenizer(SAMPLE_VOCAB, do_lower_case=True, unk_token="<unk>", pad_token="<pad>")
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁test"])
|
|
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289])
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
# ErnieMTokenizer(paddlenlp implementation) outputs '9' instead of '_9' so to mimic that '_9' is changed to '9'
|
|
self.assertListEqual(
|
|
tokens, ["▁i", "▁was", "▁born", "▁in", "9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(ids, [31, 23, 386, 19, 518, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
["▁i", "▁was", "▁born", "▁in", "9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."],
|
|
)
|
|
|
|
def test_sequence_builders(self):
|
|
tokenizer = ErnieMTokenizer(SAMPLE_VOCAB, unk_token="<unk>", pad_token="<pad>")
|
|
|
|
text = tokenizer.encode("sequence builders")
|
|
text_2 = tokenizer.encode("multi-sequence build")
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
|
|
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + [
|
|
tokenizer.sep_token_id
|
|
] + text_2 + [tokenizer.sep_token_id]
|
|
|
|
@slow
|
|
def test_tokenizer_integration(self):
|
|
expected_encoding = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 9, 304, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 5, 5, 5, 16, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 6460, 1328, 4589, 42, 122009, 115774, 23, 3559, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # fmt: skip
|
|
|
|
self.tokenizer_integration_test_util(
|
|
expected_encoding=expected_encoding,
|
|
model_name="susnato/ernie-m-base_pytorch",
|
|
sequences=[
|
|
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
|
|
"general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
|
|
"Language Understanding (NLU) and Natural Language Generation (NLG) with over32+ pretrained "
|
|
"models in100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.",
|
|
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
|
|
"conditioning on both left and right context in all layers.",
|
|
"The quick brown fox jumps over the lazy dog.",
|
|
],
|
|
)
|